首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >A Real-Time Sequential Ship Roll Prediction Scheme Based on Adaptive Sliding Data Window
【24h】

A Real-Time Sequential Ship Roll Prediction Scheme Based on Adaptive Sliding Data Window

机译:基于自适应滑动数据窗口的实时序列船侧倾预测方案

获取原文
获取原文并翻译 | 示例

摘要

A ship roll prediction scheme is proposed using an adaptive sliding data window (SDW), which is designed to represent time-varying nonlinear dynamics of ship roll motion. The adjustment of SDW is realized by developing an improved fuzzy Gath-Geva (IFGG) segmentation approach, which detects the changes of system dynamics and thereby automatically adapting the scale of SDW. By virtue of the learning scheme with an adaptive SDW, the variable-structure radial basis function network is constructed sequentially to online predict ship roll dynamics. Experimental studies on online ship roll prediction are conducted on measured data from YuKun's full-scale sea trial. Results demonstrate the remarkable predictive accuracy of the proposed ship roll prediction model as well as the effectiveness of the IFGG-based SDW in terms of representing time-varying dynamics.
机译:提出了一种使用自适应滑动数据窗口(SDW)的船侧倾预测方案,该方案旨在表示船侧倾运动的时变非线性动力学。 SDW的调整是通过开发改进的模糊Gath-Geva(IFGG)分割方法来实现的,该方法可以检测系统动态的变化,从而自动调整SDW的规模。借助具有自适应SDW的学习方案,依次构造了可变结构径向基函数网络,以在线预测船侧倾动力学。在线航行侧倾预测的实验研究是基于YuKun的全面海试所获得的测量数据进行的。结果表明,所提出的船侧倾预测模型具有出色的预测准确性,并且基于IFGG的SDW在表示时变动力学方面也非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号