首页> 外文期刊>Power Systems, IEEE Transactions on >Sliding-Window-Based Real-Time Model Order Reduction for Stability Prediction in Smart Grid
【24h】

Sliding-Window-Based Real-Time Model Order Reduction for Stability Prediction in Smart Grid

机译:基于滑动窗口的实时模型降阶,用于智能电网的稳定性预测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new real-time model order reduction technique for stability prediction in the smart grid is proposed. The proposed method uses an online proper orthogonal decomposition algorithm. A snapshot matrix on a sliding sampling window is used for extracting the main components of the system states by performing a randomized singular value decomposition. After reducing the order of the system, a local linear model is estimated for this snapshot matrix. Then, the state of the system is predicted in a sliding prediction window. Finally, a suitable stability index is calculated and the stability of the system is forecasted in this prediction window. The proposed method is capable of predicting the transient stability, unstable/critical machines and the stability limit. In addition, it can be used for the first swing and multiswing instability detection. The simulations on three test systems show that the proposed technique can predict system stability with the high precision in real time. The computational burden and the length of prediction horizon is suitable for practical applications and the proposed algorithm has significant advantages in case of large-scale power systems.
机译:本文提出了一种新的实时模型降阶技术,用于智能电网的稳定性预测。所提出的方法使用在线适当的正交分解算法。滑动采样窗口上的快照矩阵用于通过执行随机奇异值分解来提取系统状态的主要成分。减少系统顺序后,将为此快照矩阵估算局部线性模型。然后,在滑动预测窗口中预测系统的状态。最后,计算合适的稳定性指标,并在此预测窗口中预测系统的稳定性。所提出的方法能够预测瞬态稳定性,不稳定/关键机器和稳定性极限。另外,它可以用于第一次挥杆和多挥杆不稳定性检测。对三个测试系统的仿真表明,该技术可以实时,高精度地预测系统稳定性。计算负担和预测范围的长度适合于实际应用,并且在大规模电力系统的情况下,所提出的算法具有明显的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号