首页> 外文期刊>IEEE Transactions on Sustainable Computing >Monocular Vision Aided Autonomous UAV Navigation in Indoor Corridor Environments
【24h】

Monocular Vision Aided Autonomous UAV Navigation in Indoor Corridor Environments

机译:室内走廊环境中的单眼视觉辅助自主无人机导航

获取原文
获取原文并翻译 | 示例

摘要

Deployment of autonomous Unmanned Aerial Vehicles (UAV) in various sectors such as disaster hit environments, industries, agriculture, etc., not only improves productivity but also reduces human intervention resulting in sustainable benefits. In this regard, we present a model for autonomous navigation and collision avoidance of UAVs in GPS-denied corridor environments. In the first stage, we suggest a fast procedure to estimate the set of parallel lines whose intersection would yield the position of the vanishing point (VP) inside the corridor. A suitable measure is then formulated based on the position of VP on the intersecting lines in reference to any of the image boundary axes. The knowledge of VP location alongside the formulated mechanism govern the necessary set of commands to safely navigate the UAV avoiding any collision with the side walls. Furthermore, the relative Euclidean distance scale expansion of matched scale-invariant keypoints in a pair of frames is taken into account to estimate the depth of a frontal obstacle; usually a wall at the end of the corridor. However, turbulence in the UAV arising due to its rotors or other external factors such as wind may introduce uncertainty in depth estimation. It is rectified with the help of a constant velocity aided Kalman filter model. Necessary set of control commands are then generated to avoid the frontal wall before collision. Exhaustive experiments in different corridors reveal the efficacy of the proposed scheme.
机译:在受灾严重的环境,工业,农业等各个部门中部署自动驾驶无人机(UAV),不仅可以提高生产率,还可以减少人为干预,从而带来可持续的收益。在这方面,我们提出了一种在GPS受限的走廊环境中进行无人机自主导航和避免碰撞的模型。在第一阶段,我们建议一种快速的程序来估计一组平行线,这些平行线的交点将产生走廊内消失点(VP)的位置。然后根据VP在相交线上相对于任何图像边界轴的位置来制定适当的度量。 VP位置知识以及所制定的机制可控制必要的命令集,以安全地导航无人机,避免与侧壁发生任何碰撞。此外,考虑了一对帧中匹配的尺度不变关键点的相对欧几里得距离尺度扩展,以估计正面障碍物的深度。通常是走廊尽头的墙。然而,由于无人机的转子或其他外部因素(例如风)引起的无人机湍流可能会导致深度估计的不确定性。在等速辅助卡尔曼滤波器模型的帮助下进行了纠正。然后生成必要的控制命令集,以避免碰撞前的前壁。在不同走廊进行的详尽实验证明了该方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号