首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >On-line adaptive learning of the continuous density hidden Markov model based on approximate recursive Bayes estimate
【24h】

On-line adaptive learning of the continuous density hidden Markov model based on approximate recursive Bayes estimate

机译:基于近似递归贝叶斯估计的连续密度隐马尔可夫模型在线自适应学习

获取原文
获取原文并翻译 | 示例

摘要

We present a framework of quasi-Bayes (QB) learning of the parameters of the continuous density hidden Markov model (CDHMM) with Gaussian mixture state observation densities. The QB formulation is based on the theory of recursive Bayesian inference. The QB algorithm is designed to incrementally update the hyperparameters of the approximate posterior distribution and the CDHMM parameters simultaneously. By further introducing a simple forgetting mechanism to adjust the contribution of previously observed sample utterances, the algorithm is adaptive in nature and capable of performing an online adaptive learning using only the current sample utterance. It can, thus, be used to cope with the time-varying nature of some acoustic and environmental variabilities, including mismatches caused by changing speakers, channels, and transducers. As an example, the QB learning framework is applied to on-line speaker adaptation and its viability is confirmed in a series of comparative experiments using a 26-letter English alphabet vocabulary.
机译:我们提出了一个具有高斯混合状态观测密度的连续密度隐藏马尔可夫模型(CDHMM)参数的拟贝叶斯(QB)学习框架。 QB公式基于递归贝叶斯推理理论。 QB算法设计用于同时递增近似后验分布的超参数和CDHMM参数。通过进一步引入简单的遗忘机制来调整先前观察到的样本话语的贡献,该算法本质上是自适应的,并且能够仅使用当前样本话语执行在线自适应学习。因此,它可以用来应对某些声学和环境变化的时变性质,包括由于扬声器,声道和换能器的更换而引起的不匹配。例如,将QB学习框架应用于在线说话者适应,并使用26个字母的英语字母词汇进行了一系列比较实验,证实了其可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号