首页> 中文期刊> 《模式识别与人工智能》 >基于连续密度隐马尔可夫模型的人体步态识别

基于连续密度隐马尔可夫模型的人体步态识别

     

摘要

人体步态识别作为一种远距离和非侵犯性的识别技术在视频监控等领域具有广泛的应用前景.基于此原因,文中提出基于连续密度隐马尔可夫模型(CD-HMM)的人体步态识别算法.首先,提出基于自然步态周期的特征提取算法,并在此基础上构造观测向量集.然后,使用从训练样本集中提取的步态向量集对CD-HMM进行参数估计.最后,提出基于Cox回归分析的渐进自适应算法对训练过的步态模型进行参数自适应和步态识别,实验表明,相比现有的其它步态识别算法,文中算法具有更高的识别率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号