首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >N-channel hidden Markov models for combined stressed speech classification and recognition
【24h】

N-channel hidden Markov models for combined stressed speech classification and recognition

机译:N通道隐马尔可夫模型,用于组合强调语音分类和识别

获取原文
获取原文并翻译 | 示例

摘要

Robust speech recognition systems must address variations due to perceptually induced stress in order to maintain acceptable levels of performance in adverse conditions. One approach for addressing these variations is to utilize front-end stress classification to direct a stress dependent recognition algorithm which separately models each speech production domain. This study proposes a new approach which combines stress classification and speech recognition functions into one algorithm. This is accomplished by generalizing the one-dimensional (1-D) hidden Markov model to an N-channel hidden Markov model (N-channel HMM). Here, each stressed speech production style under consideration is allocated a dimension in the N-channel HMM to model each perceptually induced stress condition. It is shown that this formulation better integrates perceptually induced stress effects for stress independent recognition. This is due to the sub-phoneme (state level) stress classification that is implicitly performed by the algorithm. The proposed N-channel stress independent HMM method is compared to a previously established one-channel stress dependent isolated word recognition system yielding a 73.8% reduction in error rate. In addition, an 82.7% reduction in error rate is observed compared to the common one-channel neutral trained recognition approach.
机译:健壮的语音识别系统必须解决由于感知压力引起的变化,以便在不利条件下保持可接受的性能水平。解决这些变化的一种方法是利用前端压力分类来指导基于压力的识别算法,该算法分别对每个语音产生域进行建模。这项研究提出了一种新方法,它将压力分类和语音识别功能组合到一个算法中。这是通过将一维(1-D)隐藏Markov模型泛化为N通道隐藏Markov模型(N通道HMM)来实现的。在这里,正在考虑的每个强调语音产生样式在N通道HMM中分配了一个维度,以模拟每个感知诱发的压力条件。结果表明,该配方更好地整合了感知诱发的应激效应,从而实现了对应激的独立识别。这是由于算法隐式执行的子音素(状态级别)重音分类。所提出的N通道独立于压力的HMM方法与先前建立的单通道独立于应力的独立单词识别系统进行了比较,从而使错误率降低了73.8%。此外,与常见的单通道中立训练识别方法相比,错误率降低了82.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号