首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >Application of time-frequency principal component analysis to text-independent speaker identification
【24h】

Application of time-frequency principal component analysis to text-independent speaker identification

机译:时频主成分分析在与文本无关的说话人识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose a formalism, called vector filtering of spectral trajectories, that allows the integration of a number of speech parameterization approaches (cepstral analysis, /spl Delta/ and /spl Delta//spl Delta/ parameterizations, auto-regressive vector modeling, ...) under a common formalism. We then propose a new filtering, called contextual principal components (CPC) or time-frequency principal components (TFPC). This filtering consists in extracting the principal components of the contextual covariance matrix, which is the covariance matrix of a sequence of vectors expanded by their context. We apply this new filtering in the framework of closed-set speaker identification, using a subset of the POLYCOST database. When using speaker-dependent TFPC filters, our results show a relative improvement of approximately 20% compared to the use of the classical cepstral coefficients augmented by their /spl Delta/-coefficients, which is significantly better with a 90% confidence level.
机译:我们提出了一种形式主义,称为频谱轨迹的矢量滤波,它允许集成多种语音参数化方法(倒谱分析,/ spl Delta /和/ spl Delta // spl Delta /参数化,自回归矢量建模等)。 。)在一种常见的形式主义下。然后,我们提出了一种新的过滤,称为上下文主成分(CPC)或时频主成分(TFPC)。该过滤包括提取上下文协方差矩阵的主要成分,该上下文是协方差矩阵,该序列是通过其上下文扩展的向量序列的协方差矩阵。我们使用POLYCOST数据库的子集在封闭设置的说话人识别框架中应用此新过滤。当使用扬声器相关的TFPC滤波器时,与使用以/ spl Delta /系数增加的经典倒谱系数相比,我们的结果显示相对改善了约20%,在置信水平为90%时明显更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号