首页> 外文会议>Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009. ICSCCW 2009 >Principal component based classification for text-independent speaker identification
【24h】

Principal component based classification for text-independent speaker identification

机译:基于主成分的分类用于与文本无关的说话者识别

获取原文

摘要

Classification based on Principal Component analysis has recently appeared in the literature in application to text-independent speaker identification. However, results have been reported for only clean speech data. In this paper, we evaluate the performance of principal component classifier for text-independent speaker identification on telephone speech. We then improve its identification performance using a Vector Quantization classifier in combination, through fusion of classifier scores. An identification rate of 78.27% has been obtained on the NTIMIT database, which is well above the best identification rate ever reported in the literature obtained by using only one type of feature set.
机译:基于主成分分析的分类最近已出现在文献中,用于与文本无关的说话人识别。但是,仅针对干净的语音数据报告了结果。在本文中,我们评估了主成分分类器在电话语音中与文本无关的说话人识别的性能。然后,通过分类器得分的融合,结合使用矢量量化分类器,可以提高其识别性能。在NTIMIT数据库上已获得78.27%的识别率,这远高于仅使用一种类型的特征集获得的文献中报道的最佳识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号