首页> 外文期刊>IEEE Transactions on Signal Processing >Periodic Splines and Gaussian Processes for the Resolution of Linear Inverse Problems
【24h】

Periodic Splines and Gaussian Processes for the Resolution of Linear Inverse Problems

机译:周期样条和高斯过程解线性反问题

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the resolution of inverse problems in a periodic setting or, in other terms, the reconstruction of periodic continuous-domain signals from their noisy measurements. We focus on two reconstruction paradigms: variational and statistical. In the variational approach, the reconstructed signal is solution to an optimization problem that establishes a tradeoff between fidelity to the data and smoothness conditions via a quadratic regularization associated with a linear operator. In the statistical approach, the signal is modeled as a stationary random process defined from a Gaussian white noise and a whitening operator; one then looks for the optimal estimator in the mean-square sense. We give a generic form of the reconstructed signals for both approaches, allowing for a rigorous comparison of the two. We fully characterize the conditions under which the two formulations yield the same solution, which is a periodic spline in the case of sampling measurements. We also show that this equivalence between the two approaches remains valid on simulations for a broad class of problems. This extends the practical range of applicability of the variational method.
机译:本文讨论了在周期性设置中反问题的解决方案,或者换句话说,是从其噪声测量结果重建周期性连续域信号。我们专注于两种重构范式:变异和统计。在变分方法中,重构信号是优化问题的解决方案,该优化问题通过与线性算子关联的二次正则化在数据保真度和平滑度条件之间建立了一个折衷方案。在统计方法中,将信号建模为由高斯白噪声和白化算子定义的平稳随机过程;然后在均方意义上寻找最佳估计量。我们为这两种方法给出了重构信号的通用形式,从而可以对两者进行严格的比较。我们充分描述了两种配方产生相同溶液的条件,这在抽样测量的情况下是周期性的样条曲线。我们还表明,两种方法之间的这种等效性在针对大类问题的仿真中仍然有效。这扩展了变分方法的实用范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号