首页> 外文学位 >Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions.
【24h】

Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions.

机译:具有高斯轨道和周期边界条件的线性比例密度泛函理论。

获取原文
获取原文并翻译 | 示例

摘要

We report methodological and computational details of our Kohn-Sham density functional method with Gaussian orbitals for systems with periodic boundary conditions (PBC). When solving iterative self-consistent field (SCF) equations of density functional theory (DFT), the most computationally demanding tasks are Kohn-Sham (or Fock) matrix formation and the density matrix update step. The former requires evaluation of the Coulomb interactions and the exchange-correlation quadrature, and in our code both of them are computed via O (N) techniques. An O (N) approach for the Coulomb problem in electronic structure calculations with PBC is developed here and is based on the direct space fast multipole method (FMM). The FMM achieves not only linear scaling of computational time with system size but also high accuracy, which is pivotal for avoiding numerical instabilities that have previously plagued calculations with large bases, especially those containing diffuse functions. The density matrix update step is carried out via the conventional O (N3) diagonalization of the Fock matrix, which for systems with less than ≈3000 basis functions is cheaper than the recently developed O (N) algorithms. In addition to evaluating energy, our code also computes analytic energy gradients with respect to atomic positions and cell dimensions (forces). Combining the latter with the developed in this work redundant internal coordinate algorithm for optimization of periodic systems, it becomes possible to optimize geometries of periodic structures with great efficiency and accuracy. We demonstrate the capabilities of our method with benchmark calculations on polyacetylene, poly(p-phenylenevinylene) (PPV), and a series of carbon and boron-nitride single wall nanotubes employing basis sets of double zeta plus polarization quality, in conjunction with generalized gradient approximation and kinetic energy density dependent functionals. We also present vibrational frequencies for PPV obtained from finite differences of forces. The largest calculation reported in this work contains 244 atoms and 1344 contracted Gaussians in the unit cell.
机译:对于具有周期性边界条件(PBC)的系统,我们报告了使用高斯轨道的Kohn-Sham密度泛函方法的方法和计算细节。在求解密度泛函理论(DFT)的迭代自洽场(SCF)方程时,计算量最大的任务是Kohn-Sham(或Fock)矩阵的形成和密度矩阵更新步骤。前者需要评估库仑相互作用和交换相关正交,并且在我们的代码中,它们都是通过 O N )技术。在此开发了一种基于PBC的电子结构计算中库仑问题的 O N )方法,该方法基于直接空间快速多极方法(FMM)。 FMM不仅可以实现系统尺寸的计算时间的线性缩放,而且还可以实现高精度,这对于避免以前困扰大型基数(尤其是那些包含扩散函数)的数值不稳定性至关重要。密度矩阵更新步骤是通过常规的 O N 3 )Fock矩阵的对角化,对于少于≈ 3000基函数的系统,它比最近开发的 O N )算法。除了评估能量之外,我们的代码还计算关于原子位置和单元尺寸(力)的分析能梯度。将后者与本工作中开发的用于对周期系统进行优化的冗余内部坐标算法相结合,可以高效且准确地优化周期结构的几何形状。我们通过对聚乙炔,聚(斜体对苯二甲酸-苯撑乙烯)(PPV)以及一系列采用双zeta加极化基础集的碳和氮化硼单壁纳米管进行基准计算,论证了我们方法的功能质量,广义梯度近似和动能密度相关的函数。我们还介绍了从力的有限差异获得的PPV的振动频率。这项工作中报告的最大计算包含了244个原子和1344个收缩高斯单元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号