首页> 外文期刊>IEEE Transactions on Signal Processing >Two methods for Toeplitz-plus-Hankel approximation to a data covariance matrix
【24h】

Two methods for Toeplitz-plus-Hankel approximation to a data covariance matrix

机译:数据协方差矩阵的Toeplitz加Hankel逼近的两种方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, fast algorithms have been developed for computing the optimal linear least squares prediction filters for nonstationary random processes (fields) whose covariances have (block) Toeplitz-Hankel form. If the covariance of the random process (field) must be estimated from the data, the following problem is presented: given a data covariance matrix, computer from the available data, find the Toeplitz-plus-Hankel matrix closest to this matrix in some sense. The authors give two procedures for computing the Toeplitz-plus-Hankel matrix that minimizes the Hilbert-Schmidt norm of the difference between the two matrices. The first approach projects the data covariance matrix onto the subspace of Toeplitz-plus-Hankel matrices, for which basis functions can be computed using a Gram-Schmidt orthonormalization. The second approach projects onto the subspace of symmetric Toeplitz plus skew-persymmetric Hankel matrices, resulting in a much simpler algorithm. The extension to block Toeplitz-plus-Hankel data covariance matrix approximation is also addressed.
机译:近来,已经开发了用于为协方差具有(块)Toeplitz-Hankel形式的非平稳随机过程(场)计算最佳线性最小二乘预测滤波器的快速算法。如果必须从数据中估计随机过程(字段)的协方差,则会出现以下问题:给定数据协方差矩阵,从可用数据中计算计算机,找到在某种意义上最接近该矩阵的Toeplitz + Hankel矩阵。作者给出了两种计算Toeplitz加Hankel矩阵的过程,该过程使两个矩阵之差的Hilbert-Schmidt范数最小。第一种方法将数据协方差矩阵投影到Toeplitz-Hankel矩阵的子空间上,为此,可以使用Gram-Schmidt正交归一化来计算基函数。第二种方法投影到对称Toeplitz加上偏斜对称Hankel矩阵的子空间,从而使算法简单得多。还解决了扩展Toeplitz + Hankel数据协方差矩阵逼近的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号