首页> 外文期刊>Communications in Statistics >O(N~2)-Operation Approximation of Covariance Matrix Inverse in Gaussian Process Regression Based on Quasi-Netwon BFGS Method
【24h】

O(N~2)-Operation Approximation of Covariance Matrix Inverse in Gaussian Process Regression Based on Quasi-Netwon BFGS Method

机译:基于拟Netwon BFGS方法的高斯过程回归中协方差矩阵逆的O(N〜2)-运算逼近

获取原文
获取原文并翻译 | 示例

摘要

Gaussian process (GP) is a Bayesian nonparametric regression model, showing good performance in various applications. However, during its model-tuning procedure, the GP implementation suffers from numerous covariance-matrix inversions of expensive O(N~3) operations, where N is the matrix dimension. In this article, we propose using the quasi-Newton BFGS O(N~2)-Operation formula to approximate/replace recursively the inverse of covariance matrix at every iteration. The implementation accuracy is guaranteed carefully by a matrix-trace criterion and by the restarts technique to generate good initial guesses. A number of numerical tests are then performed based on the sinusoidal regression example and the Wiener-Hammerstein identification example. It is shown that by using the proposed implementation, more than 80% O(N~3) operations could be eliminated, and a typical speedup of 5-9 could be achieved as compared to the standard maximum-likelihood-estimation (MLE) implementation commonly used in Gaussian process regression.
机译:高斯过程(GP)是贝叶斯非参数回归模型,在各种应用中显示出良好的性能。但是,在模型调整过程中,GP的实现遭受了昂贵的O(N〜3)运算的许多协方差矩阵求逆,其中N是矩阵维。在本文中,我们建议使用拟牛顿BFGS O(N〜2)-运算公式在每次迭代时递归地近似/替换协方差矩阵的逆。矩阵跟踪标准和重新启动技术可以很好地保证实现精度,以产生良好的初始猜测。然后,基于正弦回归示例和Wiener-Hammerstein识别示例进行了许多数值测试。结果表明,与标准的最大似然估计(MLE)实现相比,通过使用所提出的实现,可以消除80%以上的O(N〜3)操作,并且可以实现5-9的典型加速比常用于高斯过程回归。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号