首页> 外文期刊>IEEE Transactions on Signal Processing >Estimation of DOA in unknown noise: performance analysis of UN-MUSIC and UN-CLE, and the optimality of CCD
【24h】

Estimation of DOA in unknown noise: performance analysis of UN-MUSIC and UN-CLE, and the optimality of CCD

机译:未知噪声中的DOA估计:UN-MUSIC和UN-CLE的性能分析以及CCD的最优性

获取原文
获取原文并翻译 | 示例

摘要

In a previous paper, a new approach was proposed for the consistent estimation of the directions of arrival (DOA) of signals in an unknown spatially correlated noise environment using generalized correlation decomposition (GCD). Based on the various interesting properties of the eigenspace structure obtained by GCD, two effective methods (UN-MUSIC and UNCLE) of estimating the DOA in an unknown correlated noise were developed, In this paper, the performance of the two methods are analyzed. It is shown that the performance of these two methods can be optimized by assigning optimum weighting matrices in their respective criteria. Furthermore, and more importantly, it is also shown that of all the correlation decompositions, the canonical correlation decomposition (CCD) leads to the optimum performance of the methods. Computer simulations confirm these conclusions and show that the use of CCD is robust even under variable spatially correlated noise conditions.
机译:在先前的论文中,提出了一种新方法,用于使用广义相关分解(GCD)对未知空间相关噪声环境中信号的到达方向(DOA)进行一致估计。基于GCD获得的本征空间结构的各种有趣特性,开发了两种估计未知相关噪声中DOA的有效方法(UN-MUSIC和UNCLE),本文对这两种方法的性能进行了分析。结果表明,可以通过在各自的标准中分配最佳加权矩阵来优化这两种方法的性能。此外,更重要的是,还表明,在所有相关分解中,规范相关分解(CCD)导致方法的最佳性能。计算机仿真证实了这些结论,并表明即使在可变的空间相关噪声条件下,CCD的使用也很可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号