首页> 外文期刊>IEEE Transactions on Signal Processing >Exponential stability of filters and smoothers for hidden Markov models
【24h】

Exponential stability of filters and smoothers for hidden Markov models

机译:隐马尔可夫模型的滤波器和平滑器的指数稳定性

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of filtering and fixed-lag smoothing for discrete-time and discrete-state hidden Markov models (HMMs), with the intention of extending some important results in Kalman filtering, notably the property of exponential stability. By appealing to a generalized Perron-Frobenius result for non-negative matrices, we are able to demonstrate exponential forgetting for both the recursive filters and smoothers; furthermore, methods for deriving overbounds on the convergence rate are indicated. Simulation studies for a two-state and two-output HMM verify qualitatively some of the theoretical predictions, and the observed convergence rate is shown to be bounded in accordance with the theoretical predictions.
机译:我们解决了离散时间和离散状态隐马尔可夫模型(HMM)的滤波和固定滞后平滑问题,目的是扩展卡尔曼滤波的一些重要结果,尤其是指数稳定性。通过吸引非负矩阵的广义Perron-Frobenius结果,我们能够证明递归滤波器和平滑器的指数遗忘;此外,指出了用于导出收敛速率上的边界的方法。针对二态和二输出HMM的仿真研究定性地验证了一些理论预测,并且观察到的收敛速度已证明与理论预测一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号