首页> 外文期刊>IEEE Transactions on Signal Processing >Approximate maximum likelihood estimators for array processing in multiplicative noise environments
【24h】

Approximate maximum likelihood estimators for array processing in multiplicative noise environments

机译:乘性噪声环境下阵列处理的近似最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of localizing a source by means of a sensor array when the received signal is corrupted by multiplicative noise. This scenario is encountered, for example, in communications, owing to the presence of local scatterers in the vicinity of the mobile or due to wavefronts that propagate through random inhomogeneous media. Since the exact maximum likelihood (ML) estimator is computationally intensive, two approximate solutions are proposed, originating from the analysis of the high and low signal to-noise ratio (SNR) cases, respectively. First, starting with the no additive noise case, a very simple approximate ML (AML/sub 1/) estimator is derived. The performance of the AML/sub 1/ estimator in the presence of additive noise is studied, and a theoretical expression for its asymptotic variance is derived. Its performance is shown to be close to the Cramer-Rao bound (CRB) for moderate to high SNR. Next, the low SNR case is considered, and the corresponding AML/sub 2/ solution is derived. It is shown that the approximate ML criterion can be concentrated with respect to both the multiplicative and additive noise powers, leaving out a two-dimensional (2-D) minimization problem instead of a four-dimensional (4-D) problem required by the exact ML. Numerical results illustrate the performance of the estimators and confirm the validity of the theoretical analysis.
机译:我们考虑当接收信号被乘法噪声破坏时通过传感器阵列定位信号源的问题。例如,由于在移动台附近存在本地散射体,或者由于通过随机不均匀介质传播的波前,在通信中会遇到这种情况。由于精确的最大似然(ML)估计器需要大量计算,因此提出了两种近似解,分别源自对高信噪比(SNR)情况和低信噪比(SNR)情况的分析。首先,从无加性噪声的情况开始,得出一个非常简单的近似ML(AML / sub 1 /)估计器。研究了存在加性噪声的情况下AML / sub 1 /估计量的性能,并推导了其渐近方差的理论表达式。对于中等到高SNR,其性能已接近Cramer-Rao界(CRB)。接下来,考虑低SNR的情况,并得出相应的AML / sub 2 /解决方案。结果表明,近似ML准则可以集中在乘性和相加噪声功率上,而不存在二维(2-D)最小化问题,而不是二维(4-D)问题。确切的ML。数值结果说明了估计器的性能,并证实了理论分析的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号