首页> 外文期刊>IEEE Transactions on Signal Processing >Feature sets for nonstationary signals derived from moments of the singular value decomposition of Cohen-Posch (positive time-frequency) distributions
【24h】

Feature sets for nonstationary signals derived from moments of the singular value decomposition of Cohen-Posch (positive time-frequency) distributions

机译:从Cohen-Posch(正时频)分布的奇异值分解的矩导出的非平稳信号的特征集

获取原文
获取原文并翻译 | 示例

摘要

This article presents a new method for determining the principal features of a nonstationary time series process based on the singular value decomposition (SVD) of the Cohen-Posch (1985) positive time-frequency distribution. This new method uses density functions derived from the SVD singular vectors to generate moments that are associated with the principal features of the nonstationary process. Since the SVD singular vectors are orthonormal, the vectors whose elements are composed of the squared elements of the SVD vectors are discrete density functions. Moments generated from these density functions are the principal features of the nonstationary time series process. The main reason for determining features of a time series process is to characterize it by a few simple descriptors.
机译:本文提出了一种基于Cohen-Posch(1985)正时频分布的奇异值分解(SVD)来确定非平稳时间序列过程主要特征的新方法。这种新方法使用从SVD奇异矢量得出的密度函数来生成与非平稳过程的主要特征相关的矩。由于SVD奇异矢量是正交的,因此其元素由SVD矢量的平方元素组成的矢量是离散密度函数。从这些密度函数产生的力矩是非平稳时间序列过程的主要特征。确定时间序列过程特征的主要原因是通过几个简单的描述符对其进行表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号