首页> 外文期刊>IEEE Transactions on Signal Processing >A Minimax Chebyshev Estimator for Bounded Error Estimation
【24h】

A Minimax Chebyshev Estimator for Bounded Error Estimation

机译:用于有界误差估计的Minimax Chebyshev估计器

获取原文
获取原文并翻译 | 示例

摘要

We develop a nonlinear minimax estimator for the classical linear regression model assuming that the true parameter vector lies in an intersection of ellipsoids. We seek an estimate that minimizes the worst-case estimation error over the given parameter set. Since this problem is intractable, we approximate it using semidefinite relaxation, and refer to the resulting estimate as the relaxed Chebyshev center (RCC). We show that the RCC is unique and feasible, meaning it is consistent with the prior information. We then prove that the constrained least-squares (CLS) estimate for this problem can also be obtained as a relaxation of the Chebyshev center, that is looser than the RCC. Finally, we demonstrate through simulations that the RCC can significantly improve the estimation error over the CLS method.
机译:我们假设经典参数向量位于椭球的交点中,因此为经典线性回归模型开发了一个非线性极小极大估计器。我们寻求一种在给定参数集上最小化最坏情况估计误差的估计。由于此问题是棘手的,因此我们使用半定松弛来近似它,并将所得的估计值称为松弛切比雪夫中心(RCC)。我们证明RCC是唯一且可行的,这意味着它与先前的信息是一致的。然后,我们证明该问题的约束最小二乘(CLS)估计也可以通过切比雪夫中心的松弛来获得,该松弛比RCC宽松。最后,我们通过仿真证明,RCC可以大大改善CLS方法的估计误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号