首页> 外文期刊>Image Processing, IEEE Transactions on >Bounded Self-Weights Estimation Method for Non-Local Means Image Denoising Using Minimax Estimators
【24h】

Bounded Self-Weights Estimation Method for Non-Local Means Image Denoising Using Minimax Estimators

机译:基于极大极小估计器的非局部均值图像去噪的有界自加权估计方法

获取原文
获取原文并翻译 | 示例

摘要

A non-local means (NLM) filter is a weighted average of a large number of non-local pixels with various image intensity values. The NLM filters have been shown to have powerful denoising performance, excellent detail preservation by averaging many noisy pixels, and using appropriate values for the weights, respectively. The NLM weights between two different pixels are determined based on the similarities between two patches that surround these pixels and a smoothing parameter. Another important factor that influences the denoising performance is the self-weight values for the same pixel. The recently introduced local James-Stein type center pixel weight estimation method (LJS) outperforms other existing methods when determining the contribution of the center pixels in the NLM filter. However, the LJS method may result in excessively large self-weight estimates since no upper bound is assumed, and the method uses a relatively large local area for estimating the self-weights, which may lead to a strong bias. In this paper, we investigated these issues in the LJS method, and then propose a novel local self-weight estimation methods using direct bounds (LMM-DB) and reparametrization (LMM-RP) based on the Baranchik’s minimax estimator. Both the LMM-DB and LMM-RP methods were evaluated using a wide range of natural images and a clinical MRI image together with the various levels of additive Gaussian noise. Our proposed parameter selection methods yielded an improved bias-variance trade-off, a higher peak signal-to-noise (PSNR) ratio, and fewer visual artifacts when compared with the results of the classical NLM and LJS methods. Our proposed methods also provide a heuristic way to select a suitable global smoothing parameters that can yield PSNR values that are close to the optimal values.
机译:非局部均值(NLM)滤波器是具有各种图像强度值的大量非局部像素的加权平均值。 NLM滤波器已被证明具有强大的降噪性能,通过平均许多噪点像素并分别为权重使用适当的值,可以出色地保留细节。基于围绕这些像素的两个面片之间的相似度和平滑参数,确定两个不同像素之间的NLM权重。影响降噪性能的另一个重要因素是同一像素的自重值。在确定NLM滤波器中中心像素的贡献时,最近引入的本地James-Stein型中心像素权重估计方法(LJS)优于其他现有方法。但是,由于不考虑上限,因此LJS方法可能导致过大的自加权估计,并且该方法使用相对较大的局部区域来估计自加权,这可能导致强烈的偏差。在本文中,我们使用LJS方法研究了这些问题,然后基于Baranchik的minimax估计量,提出了一种使用直接界限(LMM-DB)和重新参数化(LMM-RP)的新颖的局部自权重估计方法。使用广泛的自然图像和临床MRI图像以及各种水平的加性高斯噪声对LMM-DB和LMM-RP方法进行了评估。与经典NLM和LJS方法的结果相比,我们提出的参数选择方法产生了改进的偏差方差权衡,更高的峰值信噪比(PSNR)和较少的视觉伪像。我们提出的方法还提供了一种启发式方法来选择合适的全局平滑参数,该参数可以产生接近最佳值的PSNR值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号