首页> 外文期刊>Signal Processing, IEEE Transactions on >Distributed Adaptive Node-Specific Signal Estimation in Fully Connected Sensor Networks—Part I: Sequential Node Updating
【24h】

Distributed Adaptive Node-Specific Signal Estimation in Fully Connected Sensor Networks—Part I: Sequential Node Updating

机译:全连接传感器网络中的分布式自适应节点专用信号估计—第一部分:顺序节点更新

获取原文
获取原文并翻译 | 示例

摘要

We introduce a distributed adaptive algorithm for linear minimum mean squared error (MMSE) estimation of node-specific signals in a fully connected broadcasting sensor network where the nodes collect multichannel sensor signal observations. We assume that the node-specific signals to be estimated share a common latent signal subspace with a dimension that is small compared to the number of available sensor channels at each node. In this case, the algorithm can significantly reduce the required communication bandwidth and still provide the same optimal linear MMSE estimators as the centralized case. Furthermore, the computational load at each node is smaller than in a centralized architecture in which all computations are performed in a single fusion center. We consider the case where nodes update their parameters in a sequential round robin fashion. Numerical simulations support the theoretical results. Because of its adaptive nature, the algorithm is suited for real-time signal estimation in dynamic environments, such as speech enhancement with acoustic sensor networks.
机译:我们介绍了一种分布式自适应算法,用于在完全连接的广播传感器网络中节点特定信号的线性最小均方误差(MMSE)估计,其中节点收集多通道传感器信号观测值。我们假设要估计的特定于节点的信号共享一个公共的潜在信号子空间,该子空间的尺寸与每个节点上可用传感器通道的数量相比要小。在这种情况下,该算法可以大大减少所需的通信带宽,并且仍然提供与集中式情况相同的最佳线性MMSE估计器。此外,与所有集中在单个融合中心中执行的集中式体系结构相比,每个节点的计算量都较小。我们考虑节点以顺序循环方式更新其参数的情况。数值模拟支持理论结果。由于其自适应性,该算法适用于动态环境中的实时信号估计,例如使用声学传感器网络进行语音增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号