首页> 外文期刊>Signal Processing, IEEE Transactions on >Distributed Adaptive Node-Specific Signal Estimation in Fully Connected Sensor Networks—Part II: Simultaneous and Asynchronous Node Updating
【24h】

Distributed Adaptive Node-Specific Signal Estimation in Fully Connected Sensor Networks—Part II: Simultaneous and Asynchronous Node Updating

机译:全连接传感器网络中的分布式自适应特定于节点的信号估计-第二部分:同时和异步节点更新

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we revisit an earlier introduced distributed adaptive node-specific signal estimation (DANSE) algorithm that operates in fully connected sensor networks. In the original algorithm, the nodes update their parameters in a sequential round-robin fashion, which may yield a slow convergence of the estimators, especially so when the number of nodes in the network is large. When all nodes update simultaneously, the algorithm adapts more swiftly, but convergence can no longer be guaranteed. Simulations show that the algorithm then often gets locked in a suboptimal limit cycle. We first provide an extension to the DANSE algorithm, in which we apply an additional relaxation in the updating process. The new algorithm is then proven to converge to the optimal estimators when nodes update simultaneously or asynchronously, be it that the computational load at each node increases in comparison with the algorithm with sequential updates. Finally, based on simulations it is demonstrated that a simplified version of the new algorithm, without any extra computational load, can also provide convergence to the optimal estimators.
机译:在本文中,我们将重新研究较早引入的分布式自适应特定于节点的信号估计(DANSE)算法,该算法可在完全连接的传感器网络中运行。在原始算法中,节点以顺序循环的方式更新其参数,这可能会导致估计量的收敛缓慢,尤其是当网络中的节点数量较大时。当所有节点同时更新时,该算法可以更快地进行自适应,但不再能够保证收敛。仿真表明,该算法通常会锁定在次优的极限循环中。我们首先提供DANSE算法的扩展,其中在更新过程中应用了额外的放松。事实证明,当节点同时或异步更新时,新算法可以收敛到最优估计量,这是因为与采用顺序更新的算法相比,每个节点的计算量都增加了。最后,基于仿真,证明了新算法的简化版本,无需任何额外的计算负荷,也可以为最优估计量提供收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号