首页> 外文期刊>Signal Processing, IEEE Transactions on >A Multi-Resolution Hidden Markov Model Using Class-Specific Features
【24h】

A Multi-Resolution Hidden Markov Model Using Class-Specific Features

机译:使用类特定功能的多分辨率隐马尔可夫模型

获取原文
获取原文并翻译 | 示例

摘要

We apply the PDF projection theorem to generalize the hidden Markov model (HMM) to accommodate multiple simultaneous segmentations of the raw data and multiple feature extraction transformations. Different segment sizes and feature transformations are assigned to each state. The algorithm averages over all allowable segmentations by mapping the segmentations to a “proxy” HMM and using the forward procedure. A by-product of the algorithm is the set of a posteriori state probability estimates that serve as a description of the input data. These probabilities have simultaneously the temporal resolution of the smallest processing windows and the processing gain and frequency resolution of the largest processing windows. The method is demonstrated on the problem of precisely modeling the consonant “T” in order to detect the presence of a distinct “burst” component. We compare the algorithm against standard speech analysis methods using data from the TIMIT corpus.
机译:我们应用PDF投影定理来推广隐马尔可夫模型(HMM),以适应原始数据的多个同时分割和多个特征提取转换。不同的段大小和特征转换分配给每个状态。该算法通过将分段映射到“代理” HMM并使用前向过程对所有允许的分段取平均值。该算法的副产品是后验状态概率估计值的集合,该估计值用作输入数据的描述。这些概率同时具有最小处理窗口的时间分辨率以及最大处理窗口的处理增益和频率分辨率。该方法针对精确建模辅音“ T”以检测是否存在“突发”成分的问题进行了演示。我们使用TIMIT语料库中的数据将算法与标准语音分析方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号