首页> 外文期刊>Signal Processing, IEEE Transactions on >Learning Sparse Representation Using Iterative Subspace Identification
【24h】

Learning Sparse Representation Using Iterative Subspace Identification

机译:使用迭代子空间识别学习稀疏表示

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce the iterative subspace identification (ISI) algorithm for learning subspaces in which the data may live. Our subspace identification method differs from currently available method in its ability to infer the dimension of the subspaces from the data without prior knowledge. The learned subspaces can be combined to produce a data driven overcomplete dictionary with good sparseness and generalizability qualities, or can be directly exploited in applications where block sparseness is needed. We describe the ISI algorithm and a complementary optimization method. We demonstrate the ability of the proposed method to produce sparse representations comparable to those achieved with the K-SVD algorithm, but with less than one eighth the training time. Furthermore, the computation savings allows us to develop a shift-tolerant training procedure. We also illustrate its benefits in underdetermined blind source separation of audio, where performance is directly impacted by the sparseness of the representation.
机译:在本文中,我们介绍了用于学习数据可能居住的子空间的迭代子空间识别(ISI)算法。我们的子空间识别方法与当前可用的方法的不同之处在于,它无需先验知识即可从数据推断子空间的维数的能力。可以将学习到的子空间组合以生成具有良好稀疏性和泛化性的数据驱动的不完整字典,或者可以将其直接用于需要块稀疏性的应用程序中。我们描述了ISI算法和补充优化方法。我们证明了所提出的方法能够产生与K-SVD算法可实现的稀疏表示相当的能力,但训练时间少于八分之一。此外,节省的计算量使我们能够开发出可容忍的训练程序。我们还说明了其在不确定的音频盲源分离中的好处,在这种情况下,性能受表示的稀疏性直接影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号