首页> 外文期刊>Neural processing letters >Subspace Clustering via Integrating Sparse Representation and Adaptive Graph Learning
【24h】

Subspace Clustering via Integrating Sparse Representation and Adaptive Graph Learning

机译:通过集成稀疏表示和自适应图学习的子空间群集

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation is a powerful tool for subspace clustering, but most existing methods for this issue ignore the local manifold information in learning procedure. To this end, in this paper we propose a novel model, dubbed Sparse Representation with Adaptive Graph (SRAG), which integrates adaptive graph learning and sparse representation into a unified framework. Specifically, the former can preserve the local manifold structure of data, while the latter is useful for digging global information. For the objective function of SRAG has multiple intractable terms, an ADMM method is developed to solve it. Numerous experimental results demonstrate that our proposed method consistently outperforms several representative clustering algorithms by significant margins.
机译:稀疏表示是子空间群集的强大工具,但此问题的大多数现有方法都忽略了学习过程中的本地歧所信息。 为此,在本文中,我们提出了一种新颖的模型,将稀疏表示与自适应图(SRAG)集成到统一框架中的自适应图学习和稀疏表示。 具体地,前者可以保留数据的局部歧管结构,而后者可用于挖掘全局信息。 对于SRAG的目标函数具有多种难以处理的术语,开发了一个ADMM方法来解决它。 许多实验结果表明,我们所提出的方法通过显着的边缘始终如一地优于几种代表性聚类算法。

著录项

  • 来源
    《Neural processing letters》 |2021年第6期|4377-4388|共12页
  • 作者单位

    Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China|Wenzhou Polytech Wenzhou 325035 Peoples R China;

    Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China;

    Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China;

    Northwestern Polytech Univ Mech & Elect Xian 710072 Peoples R China;

    Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Clustering; Sparse representation; Graph; Spectral clustering;

    机译:聚类;稀疏表示;图;光谱聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号