首页> 外文期刊>Signal Processing, IEEE Transactions on >Maximum Likelihood Direction Finding in Spatially Colored Noise Fields Using Sparse Sensor Arrays
【24h】

Maximum Likelihood Direction Finding in Spatially Colored Noise Fields Using Sparse Sensor Arrays

机译:使用稀疏传感器阵列在空间彩色噪声场中找到最大似然方向

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of maximum likelihood (ML) direction-of-arrival (DOA) estimation of narrowband signals using sparse sensor arrays, which consist of widely separated subarrays such that the unknown spatially colored noise field is uncorrelated between different subarrays. We develop ML DOA estimators under the assumptions of zero-mean and non-zero-mean Gaussian signals based on an Expectation-Maximization (EM) framework. For DOA estimation of non-zero-mean Gaussian signals, we derive the Cramér–Rao bound (CRB) as well as the asymptotic error covariance matrix of the ML estimator that improperly assumes zero-mean Gaussian signals. We provide analytical and numerical performance comparisons for the existing deterministic and the proposed stochastic ML estimators. The results show that the proposed estimators normally provide better accuracy than the existing deterministic estimator, and that the nonzero means in the signals improve the accuracy of DOA estimation.
机译:我们考虑使用稀疏传感器阵列对窄带信号进行最大似然(ML)到达方向(DOA)估计的问题,该阵列由广泛分离的子阵列组成,因此未知空间彩色噪声场在不同子阵列之间不相关。我们基于期望最大化(EM)框架在零均值和非零均值高斯信号的假设下开发ML DOA估计器。对于非零均值高斯信号的DOA估计,我们推导了Cramér-Rao界(CRB)以及ML估计器的渐近误差协方差矩阵,该矩阵不正确地假设零均值高斯信号。我们为现有的确定性和建议的随机ML估计量提供了分析和数值性能比较。结果表明,所提出的估计器通常比现有的确定性估计器具有更好的准确性,并且信号中的非零均值可以提高DOA估计的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号