首页> 外文OA文献 >Sparse Bayesian Learning Based Direction-of-Arrival Estimation under Spatially Colored Noise Using Acoustic Hydrophone Arrays
【2h】

Sparse Bayesian Learning Based Direction-of-Arrival Estimation under Spatially Colored Noise Using Acoustic Hydrophone Arrays

机译:基于稀疏的贝叶斯学习的基于地点估计在空间彩色噪声下使用声学水听器阵列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Direction-of-arrival (DOA) estimation in a spatially isotropic white noise background has been widely researched for decades. However, in practice, such as underwater acoustic ambient noise in shallow water, the ambient noise can be spatially colored, which may severely degrade the performance of DOA estimation. To solve this problem, this paper proposes a DOA estimation method based on sparse Bayesian learning with the modified noise model using acoustic vector hydrophone arrays. Firstly, an applicable linear noise model is established by using the prolate spheroidal wave functions (PSWFs) to characterize spatially colored noise and exploiting the excellent performance of the PSWFs in extrapolating band-limited signals to the space domain. Then, using the proposed noise model, an iterative method for sparse spectrum reconstruction is developed under a sparse Bayesian learning (SBL) framework to fit the actual noise field received by the acoustic vector hydrophone array. Finally, a DOA estimation algorithm under the modified noise model is also presented, which has a superior performance under spatially colored noise. Numerical results validate the effectiveness of the proposed method.
机译:几十年来,空间各向同性白噪声背景中的到达方向(DOA)估计已被广泛研究。然而,在实践中,例如浅水中的水下声学环境噪声,环境噪声可以是空间上的,这可能会严重降低DOA估计的性能。为了解决这个问题,本文提出了一种基于稀疏贝叶斯学习的DOA估计方法,使用声学向量水听器阵列与改进的噪声模型。首先,通过使用环形球波函数(PSWFS)来建立适用的线性噪声模型,以在空间彩色的噪声中表征空间彩色噪声并利用PSWF的优异性能,以将带布带限量的信号到空间域。然后,使用所提出的噪声模型,在稀疏贝叶斯学习(SBL)框架下开发了一种疏远的稀疏频谱重建方法,以适合声学向量流水声阵列接收的实际噪声场。最后,还提出了在修改噪声模型下的DOA估计算法,其在空间彩色噪声下具有优异的性能。数值结果验证了所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号