首页> 外文期刊>IEEE Transactions on Signal Processing >Maximum-likelihood bearing estimation with partly calibrated arrays in spatially correlated noise fields
【24h】

Maximum-likelihood bearing estimation with partly calibrated arrays in spatially correlated noise fields

机译:空间相关噪声场中具有部分校准阵列的最大似然方位估计

获取原文
获取原文并翻译 | 示例

摘要

The problem of using a partly calibrated array for maximum likelihood (ML) bearing estimation of possibly coherent signals buried in unknown correlated noise fields is shown to admit a neat solution under fairly general conditions. More exactly, this paper assumes that the array contains some calibrated sensors, whose number is only required to be larger than the number of signals impinging on the array, and also that the noise in the calibrated sensors is uncorrelated with the noise in the other sensors. These two noise vectors, however, may have arbitrary spatial autocovariance matrices. Under these assumptions the many nuisance parameters (viz., the elements of the signal and noise covariance matrices and the transfer and location characteristics of the uncalibrated sensors) can be eliminated from the likelihood function, leaving a significantly simplified concentrated likelihood whose maximum yields the ML bearing estimates. The ML estimator introduced in this paper, and referred to as MLE, is shown to be asymptotically equivalent to a recently proposed subspace-based bearing estimator called UNCLE and rederived herein by a much simpler approach than in the original work. A statistical analysis derives the asymptotic distribution of the MLE and UNCLE estimates, and proves that they are asymptotically equivalent and statistically efficient. In a simulation study, the MLE and UNCLE methods are found to possess very similar finite-sample properties as well. As UNCLE is computationally more efficient, it may be the preferred technique in a given application.
机译:使用部分校准的阵列进行掩埋在未知相关噪声场中的可能相干信号的最大似然(ML)方位估计的问题表明,在相当普遍的条件下,可以采用一种简洁的解决方案。更准确地说,本文假设阵列中包含一些校准的传感器,这些传感器的数量仅需要大于撞击在阵列上的信号数量,并且已校准的传感器中的噪声与其他传感器中的噪声不相关。然而,这两个噪声矢量可以具有任意的空间自协方差矩阵。在这些假设下,可以从似然函数中消除许多烦人的参数(即,信号和噪声协方差矩阵的元素以及未校准传感器的传递和位置特征),从而大大简化了集中似然性,其最大似然性估算。本文介绍的ML估计量(称为MLE)被渐近地等效于最近提出的基于子空间的方位估计量,称为UNCLE,并且在本文中通过比原始工作更简单的方法重新提出。统计分析得出MLE和UNCLE估计的渐近分布,并证明它们是渐近等效的,并且在统计上有效。在模拟研究中,发现MLE和UNCLE方法也具有非常相似的有限样本属性。由于UNCLE在计算上更加有效,因此它可能是给定应用程序中的首选技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号