首页> 外文期刊>Signal Processing, IEEE Transactions on >Bayesian Minimum Mean-Square Error Estimation for Classification Error—Part II: Linear Classification of Gaussian Models
【24h】

Bayesian Minimum Mean-Square Error Estimation for Classification Error—Part II: Linear Classification of Gaussian Models

机译:分类误差的贝叶斯最小均方误差估计-第二部分:高斯模型的线性分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, Part II of a two-part study, we derive a closed-form analytic representation of the Bayesian minimum mean-square error (MMSE) error estimator for linear classification assuming Gaussian models. This is presented in a general framework permitting a structure on the covariance matrices and a very flexible class of prior parameter distributions with four free parameters. Closed-form solutions are provided for known, scaled identity, and arbitrary covariance matrices. We examine performance in small sample settings via simulations on both synthetic and real genomic data, and demonstrate the robustness of these error estimators to false Gaussian modeling assumptions by applying them to Johnson distributions.
机译:在本文的两部分研究的第二部分中,我们推导了假定高斯模型的线性分类的贝叶斯最小均方误差(MMSE)误差估计量的闭式解析表示。这是在通用框架中表示的,该框架允许在协方差矩阵上建立结构,并具有非常灵活的具有四个自由参数的先验参数分布类。为已知的,可缩放的恒等式和任意协方差矩阵提供了封闭形式的解决方案。我们通过对合成和实际基因组数据进行仿真来检验小样本环境下的性能,并通过将其应用于Johnson分布,证明了这些误差估计器对于错误的高斯建模假设的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号