首页> 外文期刊>Signal Processing, IEEE Transactions on >A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing
【24h】

A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing

机译:稀疏半监督高光谱解混的一种新的多层贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper the problem of semisupervised hyperspectral unmixing is considered. More specifically, the unmixing process is formulated as a linear regression problem, where the abundance's physical constraints are taken into account. Based on this formulation, a novel hierarchical Bayesian model is proposed and suitable priors are selected for the model parameters such that, on the one hand, they ensure the nonnegativity of the abundances, while on the other hand they favor sparse solutions for the abundances' vector. Performing Bayesian inference based on the proposed hierarchical Bayesian model, a new low-complexity iterative method is derived, and its connection with Gibbs sampling and variational Bayesian inference is highlighted. Experimental results on both synthetic and real hyperspectral data illustrate that the proposed method converges fast, favors sparsity in the abundances' vector, and offers improved estimation accuracy compared to other related methods.
机译:本文考虑了半监督高光谱解混问题。更具体地说,将分解过程公式化为线性回归问题,其中考虑了丰度的物理限制。基于此公式,提出了一种新颖的分层贝叶斯模型,并为模型参数选择了合适的先验,从而一方面确保了丰度的非负性,另一方面又支持对丰度的稀疏解。向量。基于提出的分层贝叶斯模型进行贝叶斯推理,推导了一种新的低复杂度迭代方法,并突出了其与吉布斯采样和变分贝叶斯推理的联系。在合成和真实高光谱数据上的实验结果表明,与其他相关方法相比,该方法收敛速度快,有利于丰度矢量的稀疏性,并提供更高的估计精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号