首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >A Probabilistic Joint Sparse Regression Model for Semisupervised Hyperspectral Unmixing
【24h】

A Probabilistic Joint Sparse Regression Model for Semisupervised Hyperspectral Unmixing

机译:半监督高光谱解混的概率联合稀疏回归模型

获取原文
获取原文并翻译 | 示例

摘要

Semisupervised hyperspectral unmixing finds the ratio of spectral library members in the mixture of hyperspectral pixels to find the proportion of pure materials in a natural scene. The two main challenges are noise in observed spectral vectors and high mutual coherence of spectral libraries. To tackle these challenges, we propose a probabilistic sparse regression method for linear hyperspectral unmixing, which utilizes the implicit relations of neighboring pixels. We partition the hyperspectral image into rectangular patches. The sparse coefficients of pixels in each patch are assumed to be generated from a Laplacian scale mixture model with the same latent variables. These latent variables specify the probability of existence of endmembers in the mixture of each pixel. Experiments on synthetic and real hyperspectral images illustrate the superior performance of the proposed method over alternatives.
机译:半监督的高光谱解混可以找到高光谱像素混合中光谱库成员的比例,从而找到自然场景中纯物质的比例。两个主要挑战是观察到的频谱矢量中的噪声和频谱库的高互相关性。为了解决这些挑战,我们提出了一种线性稀疏混合的概率稀疏回归方法,该方法利用了相邻像素的隐式关系。我们将高光谱图像划分为矩形块。假定每个补丁中像素的稀疏系数是从具有相同潜在变量的拉普拉斯比例混合模型生成的。这些潜在变量指定在每个像素的混合中存在末端成员的可能性。在合成和真实高光谱图像上进行的实验说明了该方法优于替代方法的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号