首页> 外文期刊>Image Processing, IEEE Transactions on >Toward a Sparse Bayesian Markov Random Field Approach to Hyperspectral Unmixing and Classification
【24h】

Toward a Sparse Bayesian Markov Random Field Approach to Hyperspectral Unmixing and Classification

机译:面向稀疏贝叶斯马尔可夫随机场方法的高光谱分解和分类

获取原文
获取原文并翻译 | 示例

摘要

Recent work has shown that existing powerful Bayesian hyperspectral unmixing algorithms can be significantly improved by incorporating the inherent local spatial correlations between pixel class labels via the use of Markov random fields. We here propose a new Bayesian approach to joint hyperspectral unmixing and image classification such that the previous assumption of stochastic abundance vectors is relaxed to a formulation whereby a common abundance vector is assumed for pixels in each class. This allows us to avoid stochastic reparameterizations and, instead, we propose a symmetric Dirichlet distributionmodel with adjustable parameters for the common abundance vector of each class. Inference over the proposed model is achieved via a hybrid Gibbs sampler, and in particular, simulated annealing is introduced for the label estimation in order to avoid the local-trap problem. Experiments on a synthetic image and a popular, publicly available real data set indicate the proposed model is faster than and outperforms the existing approach quantitatively and qualitatively. Moreover, for appropriate choices of the Dirichlet parameter, it is shown that the proposed approach has the capability to induce sparsity in the inferred abundance vectors. It is demonstrated that this offers increased robustness in cases where the preprocessing endmember extraction algorithms overestimate the number of active endmembers present in a given scene.
机译:最近的工作表明,通过使用马尔可夫随机场在像素类标签之间合并固有的局部空间相关性,可以显着改善现有强大的贝叶斯高光谱解混算法。在此,我们提出了一种新的联合联合高光谱解混和图像分类的贝叶斯方法,从而使随机丰度矢量的先前假设放松为公式,从而为每个类别的像素假设了一个通用的丰度矢量。这使我们避免了随机重新参数化,而是为每个类的公共丰度矢量提出了一个具有可调参数的对称Dirichlet分布模型。通过混合的Gibbs采样器可以推断出所建议模型,特别是引入了模拟退火进行标签估计,从而避免了局部陷阱问题。在合成图像和流行的,可公开获得的真实数据集上进行的实验表明,所提出的模型在数量和质量上比现有方法更快,并且优于现有方法。此外,对于Dirichlet参数的适当选择,表明所提出的方法具有在推断的丰度矢量中诱导稀疏性的能力。结果表明,在预处理端成员提取算法高估给定场景中存在的活动端成员的数量的情况下,这样做可以提高鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号