首页> 外文期刊>Journal of information and computational science >Hyperspectral Imagery Classification Based on Sparse Feature and Markov Random Field
【24h】

Hyperspectral Imagery Classification Based on Sparse Feature and Markov Random Field

机译:基于稀疏特征和马尔可夫随机场的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the deficiencies that some implicit information is not well reflected in the traditional hyperspectral image classification methods, this paper presents a new hyperspectral image classification method based on Sparse Feature and Markov Random Field (SFMRF). The core idea of the SFMRF is firstly to express the hyperspectral image with the sparse feature, and then to apply the Support Vector Machine (SVM) to estimate the class conditional probability density functions, also, the MRF method is used to estimate the context-based class priors. Finally, the final class labels are determined by the Maximum a Posteriori (MAP) method. Theory analysis and simulation results on the Indian Pines hyperspectral data show that the proposed SFMRF method can greatly improve the classification accuracy.
机译:针对传统高光谱图像分类方法不能很好地反映隐含信息的不足,提出了一种基于稀疏特征和马尔可夫随机场(SFMRF)的高光谱图像分类方法。 SFMRF的核心思想是首先表达具有稀疏特征的高光谱图像,然后应用支持向量机(SVM)来估计类条件概率密度函数,此外,还使用MRF方法来估计上下文-基于班级先验。最后,最终类别标签由最大后验(MAP)方法确定。对印度松树高光谱数据的理论分析和仿真结果表明,所提出的SFMRF方法可以大大提高分类的准确性。

著录项

  • 来源
    《Journal of information and computational science》 |2015年第8期|3073-3082|共10页
  • 作者单位

    College of Information and Communications Engineering, Harbin Engineering University Harbin 150001, China;

    College of Information and Communications Engineering, Harbin Engineering University Harbin 150001, China;

    Institute of Telecommunication Satellites, China Academy of Space Technology, Beijing 100094, China, School of Electronic Engineering, Beijing University of Posts and Telecommunications Beijing 100876, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hyperspectral; Classification; Sparse Feature; MRF; SVM;

    机译:高光谱;分类;稀疏特征;MRF;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号