首页> 美国政府科技报告 >Sparse Signal Recovery Using Markov Random Fields
【24h】

Sparse Signal Recovery Using Markov Random Fields

机译:利用马尔可夫随机场进行稀疏信号恢复

获取原文

摘要

Compressive Sensing (CS) combines sampling and compression into a single sub- Nyquist linear measurement process for sparse and compressible signals. In this paper, we extend the theory of CS to include signals that are concisely represented in terms of a graphical model. In particular, we use Markov Random Fields (MRFs) to represent sparse signals whose nonzero coefficients are clustered. Our new model-based recovery algorithm, dubbed Lattice Matching Pursuit (LaMP), stably recovers MRF-modeled signals using many fewer measurements and computations than the current state-of-the-art algorithms.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号