首页> 外文期刊>Signal Processing, IEEE Transactions on >Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter
【24h】

Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter

机译:异质噪声中归一化样本协方差矩阵的偏差的推导及其在低秩STAP滤波器中的应用

获取原文
获取原文并翻译 | 示例

摘要

In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.
机译:在先前的工作中,当将干扰建模为低秩球不变随机矢量(SIRV)杂波和零均值之和时,我们已经开发了低秩(LR)时空自适应处理(STAP)滤波器高斯白噪声。该LR-STAP滤波器是从归一化样本协方差矩阵(NSCM)构建的,并具有良好的鲁棒性,可抵抗目标组分对二次数据的污染。在这种对应关系中,我们用该噪声模型推导了NSCM的偏差。我们表明从NSCM估计的特征向量是无偏的。还给出了NSCM特征值期望值的新表达式。从这些结果,我们还表明,基于我们的LR-STAP中使用的NSCM的杂波子空间投影仪的估计是对真实投影子的一致估计。数值数据的结果验证了该理论方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号