首页> 外文期刊>IEEE Transactions on Signal Processing >Random Distortion Testing and Optimality of Thresholding Tests
【24h】

Random Distortion Testing and Optimality of Thresholding Tests

机译:随机失真测试和阈值测试的最优性

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of testing whether the Mahalanobis distance between a random signal $ Theta $ and a known deterministic model $ theta _{0}$ exceeds some given non-negative real number or not, when $ Theta $ has unknown probability distribution and is observed in additive independent Gaussian noise with positive definite covariance matrix. When $ Theta $ is deterministic unknown, we prove the existence of thresholding tests on the Mahalanobis distance to $ theta _{0}$ that have specified level and maximal constant power (MCP). The MCP property is a new optimality criterion involving Wald's notion of tests with uniformly best constant power ( UBCP) on ellipsoids for testing the mean of a normal distribution. When the signal is random with unknown distribution, constant power maximality extends to maximal constant conditional power (MCCP) and the thresholding tests on the Mahalanobis distance to $ theta _{0}$ still verify this novel optimality property. Our results apply to the detection of signals in independent and additive Gaussian noise. In particular, for a large class of possible model mismatches, MCCP tests can guarantee a specified false alarm probability, in contrast to standard Neyman-Pearson tests that may not respect this constraint.
机译:本文解决了测试随机信号 $ Theta $ 与已知确定性模型 $ theta _ {0} $ 超出某些给定的非负实数时, $ Theta $ 具有未知的概率分布,并且在具有正定协方差矩阵的加性独立高斯噪声中观察到。当 $ Theta $ 是确定性未知的时,我们证明了距' $ theta _ {0} $ 具有指定的级别和最大恒定功率(MCP)。 MCP属性是一种新的最优性准则,涉及Wald的关于在椭球体上具有均一最佳恒定功率(UBCP)的测试概念,用于测试正态分布的均值。当信号是随机且分布未知的信号时,恒定功率的最大值将扩展到最大恒定条件功率(MCCP),并且对到<公式>的马氏距离进行阈值测试。 0} $ 仍然验证了这种新颖的最优性。我们的结果适用于检测独立和加性高斯噪声中的信号。特别是,对于可能的模型不匹配的种类繁多,与可能不遵守此约束的标准Neyman-Pearson测试相反,MCCP测试可以保证指定的误报概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号