首页> 外文期刊>IEEE Transactions on Information Theory >Asymptotic optimality of likelihood ratio threshold tests in decentralized detection
【24h】

Asymptotic optimality of likelihood ratio threshold tests in decentralized detection

机译:分散检测中似然比阈值检验的渐近最优性

获取原文
获取原文并翻译 | 示例

摘要

Two distributed systems are considered for discriminating between two finite-alphabet bivariate memoryless sources and for detecting a known signal in stationary bivariate additive Gaussian noise. Each system comprises two sensors, M-ary local quantizers and a fusion center which makes decisions based on quantized source observations. The problem of asymptotically optimal quantization is considered in detail for the binary (M=2) case. It is shown that optimality is achieved by quantizing a locally computed likelihood ratio wherein one distribution is in general different from the appropriate source marginal. For the problem of detection in Gaussian noise, it is further demonstrated that the optimal distributed system attains the same asymptotic performance as the optimal centralized system for appropriate choice of M.
机译:考虑使用两个分布式系统来区分两个有限字母双变量无记忆源,并检测固定双变量加性高斯噪声中的已知信号。每个系统包括两个传感器,M进制本地量化器和一个融合中心,该中心根据量化的源观测结果做出决策。对于二进制(M = 2)情况,详细考虑了渐近最佳量化的问题。结果表明,最优是通过量化局部计算的似然比来实现的,其中一种分布通常与适当的源边际不同。对于高斯噪声的检测问题,进一步证明了最优的分布式系统与针对适当选择M的最优集中式系统具有相同的渐近性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号