首页> 外文期刊>IEEE Transactions on Information Theory >Asymptotic Optimality Theory for Decentralized Sequential Hypothesis Testing in Sensor Networks
【24h】

Asymptotic Optimality Theory for Decentralized Sequential Hypothesis Testing in Sensor Networks

机译:传感器网络中分散顺序假设检验的渐近最优理论

获取原文
获取原文并翻译 | 示例

摘要

The decentralized sequential hypothesis testing problem is studied in sensor networks, where a set of sensors receive independent observations and send summary messages to the fusion center, which makes a final decision. In the scenario where the sensors have full access to their past observations, the first asymptotically Bayes sequential test is developed having the same asymptotic performance as the optimal centralized test that has access to all sensor observations. Next, in the scenario where the sensors do not have full access to their past observations, a simple but asymptotically Bayes sequential tests is developed, in which sensor message functions are what we call tandem quantizer, where each sensor only uses two different sensor quantizers with at most one switch between these two possibilities. Moreover, a new minimax formulation of optimal stationary sensor quantizers is proposed and is studied in detail in the case of additive Gaussian sensor noise. Finally, our results show that in the simplest models, feedback from the fusion center does not improve asymptotic performance in the scenario with full local memory, however, even a one-shot, one-bit feedback can significantly improve performance in the case of limited local memory.
机译:在传感器网络中研究了分散的顺序假设检验问题,在该网络中,一组传感器接收独立的观察并将摘要消息发送到融合中心,从而做出最终决定。在传感器可以完全访问其过去观测值的情况下,将开发出第一个渐近贝叶斯顺序测试,其渐进性能与可以访问所有传感器观测值的最佳集中式测试相同。接下来,在传感器无法完全访问其过去观测值的情况下,开发了一种简单但渐近的贝叶斯顺序测试,其中传感器消息功能就是我们所说的串联量化器,其中每个传感器仅使用两个不同的传感器量化器:在这两种可能性之间最多只能切换一次。此外,提出了一种最佳静止传感器量化器的minimax新公式,并在加性高斯传感器噪声的情况下进行了详细研究。最后,我们的结果表明,在最简单的模型中,来自融合中心的反馈不会在具有完整本地内存的情况下改善渐近性能,但是,即使在有限的情况下,即使是一次一比特的反馈也能显着改善性能本地内存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号