首页> 外文会议>Asilomar Conference on Signals, Systems Computers >Asymptotically optimal truncated hypothesis test for a large sensor network described by a multivariate Gaussian distribution
【24h】

Asymptotically optimal truncated hypothesis test for a large sensor network described by a multivariate Gaussian distribution

机译:多元高斯分布描述的大型传感器网络的渐近最优截断假设检验

获取原文

摘要

While recent advances have provided extremely efficient distributed methods for computing optimal test statistics for many hypothesis testing problems occurring in large sensor networks, the popular multivariate Gaussian hypothesis testing problem involving a change in both the mean vector and covariance matrix is not one of these. The difficultly is that these test statistics generally require long range communications. A truncated test is studied which only requires that each sensor shares information with 2k neighboring sensors out of a set of L total sensors. Sufficient conditions are given on the k as a function of L for a given sequence of hypothesis testing problems to ensure no loss in deflection performance as L approaches infinity when compared to the optimal untruncated detector. For several popular classes of system and process models, including observations from some wide-sense stationary limiting processes as L→∞ (after the mean is subtracted), the sufficient conditions are shown to be satisfied for k increasing very slowly compared to L even when the difficulty of the hypothesis testing problem scales in the least favorable manner. Numerical results imply the fixed-false-alarm-rate detection probability of the truncated detector converges rapidly to the detection probability of the optimal untruncated detector.
机译:尽管最近的进展为针对大型传感器网络中发生的许多假设检验问题提供了用于计算最优检验统计量的极其有效的分布式方法,但涉及均值向量和协方差矩阵均发生变化的流行的多变量高斯假设检验问题并不是其中之一。困难的是,这些测试统计信息通常需要远程通信。研究了截断测试,该测试仅要求每个传感器与L个总传感器集中的2k个相邻传感器共享信息。对于给定的假设测试问题序列,在k上给出了作为L的函数的充分条件,以确保与最佳无删节检测器相比,当L接近无穷大时,偏转性能不会损失。对于几种流行的系统和过程模型类别,包括从一些广义的平稳极限过程中观察到的L→∞(减去均值之后),已证明足以满足k与L相比缓慢增长的条件。假设检验问题的难度以最不利的方式扩展。数值结果表明,被截断的检测器的固定错误警报率检测概率迅速收敛到最佳的未被截断的检测器的检测概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号