首页> 外文期刊>Signal Processing, IEEE Transactions on >Optimized Markov Chain Monte Carlo for Signal Detection in MIMO Systems: An Analysis of the Stationary Distribution and Mixing Time
【24h】

Optimized Markov Chain Monte Carlo for Signal Detection in MIMO Systems: An Analysis of the Stationary Distribution and Mixing Time

机译:优化的马尔可夫链蒙特卡罗用于MIMO系统中的信号检测:静态分布和混合时间的分析

获取原文
获取原文并翻译 | 示例

摘要

We introduce an optimized Markov chain Monte Carlo (MCMC) technique for solving integer least-squares (ILS) problems, which include maximum likelihood (ML) detection in multiple-input multiple-output (MIMO) systems. Two factors contribute to its speed of finding the optimal solution: the probability of encountering the optimal solution when the Markov chain has converged to the stationary distribution, and the mixing time of the MCMC detector. First, we compute the optimal “temperature” parameter value, so that once the Markov chain has mixed to its stationary distribution, there is a polynomially small probability ($1/{rm poly}(N)$, instead of exponentially small) of encountering the optimal solution, where $N$ is the system dimension. This temperature is shown to be $O(sqrt{rm SNR}/ln(N))$ , where ${hbox{SNR}}>2ln{(N)}$ is the SNR. Second, we study the mixing time of the underlying Markov chain of the MCMC detector. We find that, the mixing time is closely related to whether there is a local minimum in the ILS problem's lattice structure. For some lattices without local minima, the mixing time is independent of SNR, and grows polynomially in $N$ . Conventional wisdom proposed to set temperature as the noise standard deviation, but our results show that, under such a temperature, the mixing time grows unbounded with SNR if the lattice has local minima. Our results suggest that, very often the temperature should instead be scaling at least as $Omega(sqrt{rm SNR})$ . Simulation results show that the optimized MCMC detector efficiently achieves approx- mately ML detection in MIMO systems having a huge number of transmit and receive dimensions.
机译:我们介绍了一种优化的马尔可夫链蒙特卡洛(MCMC)技术,用于解决整数最小二乘(ILS)问题,其中包括多输入多输出(MIMO)系统中的最大似然(ML)检测。有两个因素有助于其找到最佳解的速度:当马尔可夫链收敛到平稳分布时遇到最佳解的概率,以及MCMC检测器的混合时间。首先,我们计算最佳的“温度”参数值,以便一旦马尔可夫链混合到其平稳分布后,存在多项式的小概率( $ 1 / {rm poly}(N)$ ,而不是指数小)遇到的最优解,其中 $ N $ 是系统尺寸。该温度显示为 $ O(sqrt {rm SNR} / ln(N))$ ,其中 $ {hbox {SNR}}> 2ln {(N)} $ 是SNR。其次,我们研究了MCMC检测器的基础马尔可夫链的混合时间。我们发现,混合时间与ILS问题的晶格结构中是否存在局部最小值密切相关。对于某些没有局部极小值的晶格,混合时间与SNR无关,并且在 $ N $ 中呈多项式增长。传统观点建议将温度设置为噪声标准偏差,但是我们的结果表明,在这种温度下,如果晶格具有局部最小值,则混合时间的增长不受SNR的限制。我们的结果表明,通常应该改为至少按 $ Omega(sqrt {rm SNR})$ 缩放比例。 。仿真结果表明,经过优化的MCMC检测器可以在具有大量发送和接收尺寸的MIMO系统中有效地实现大约ML检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号