首页> 外文期刊>Signal Processing, IEEE Transactions on >Pattern-Coupled Sparse Bayesian Learning for Recovery of Block-Sparse Signals
【24h】

Pattern-Coupled Sparse Bayesian Learning for Recovery of Block-Sparse Signals

机译:模式耦合稀疏贝叶斯学习用于恢复稀疏信号

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of recovering block-sparse signals whose cluster patterns are unknown a priori. Block-sparse signals with nonzero coefficients occurring in clusters arise naturally in many practical scenarios. However, the knowledge of the block partition is usually unavailable in practice. In this paper, we develop a new sparse Bayesian learning method for recovery of block-sparse signals with unknown cluster patterns. A pattern-coupled hierarchical Gaussian prior is introduced to characterize the pattern dependencies among neighboring coefficients, where a set of hyperparameters are employed to control the sparsity of signal coefficients. The proposed hierarchical model is similar to that for the conventional sparse Bayesian learning. However, unlike the conventional sparse Bayesian learning framework in which each individual hyperparameter is associated independently with each coefficient, in this paper, the prior for each coefficient not only involves its own hyperparameter, but also its immediate neighbor hyperparameters. In doing this way, the sparsity patterns of neighboring coefficients are related to each other and the hierarchical model has the potential to encourage structured-sparse solutions. The hyperparameters are learned by maximizing their posterior probability. We exploit an expectation-maximization (EM) formulation to develop an iterative algorithm that treats the signal as hidden variables and iteratively maximizes a lower bound on the posterior probability. In the M-step, a simple suboptimal solution is employed to replace a gradient-based search to maximize the lower bound. Numerical results are provided to illustrate the effectiveness of the proposed algorithm.
机译:我们考虑恢复簇先验未知的块稀疏信号的问题。在许多实际情况下,自然会出现簇中具有非零系数的块稀疏信号。但是,在实践中通常不了解块分区。在本文中,我们开发了一种新的稀疏贝叶斯学习方法来恢复具有未知簇模式的块稀疏信号。引入模式耦合的分层高斯先验来表征相邻系数之间的模式相关性,其中采用一组超参数来控制信号系数的稀疏性。所提出的分层模型与常规的稀疏贝叶斯学习模型相似。但是,与传统的稀疏贝叶斯学习框架(其中每个单独的超参数与每个系数独立关联)不同,在本文中,每个系数的先验不仅涉及其自己的超参数,而且还涉及其直接邻居超参数。通过这种方式,相邻系数的稀疏模式彼此相关,并且层次模型具有鼓励结构化稀疏解决方案的潜力。通过最大化其后验概率来学习超参数。我们利用期望最大化(EM)公式来开发一种迭代算法,该算法将信号视为隐藏变量,并迭代最大化后验概率的下限。在M步中,采用简单的次优解决方案来代替基于梯度的搜索以使下限最大化。数值结果表明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号