首页> 外文期刊>IEEE Transactions on Signal Processing >Quasi-Static and Time-Selective Channel Estimation for Block-Sparse Millimeter Wave Hybrid MIMO Systems: Sparse Bayesian Learning (SBL) Based Approaches
【24h】

Quasi-Static and Time-Selective Channel Estimation for Block-Sparse Millimeter Wave Hybrid MIMO Systems: Sparse Bayesian Learning (SBL) Based Approaches

机译:块稀疏毫米波混合MIMO系统的准静态和时间选择信道估计:基于稀疏贝叶斯学习(SBL)的方法

获取原文
获取原文并翻译 | 示例

摘要

This paper develops schemes for block-sparse channel estimation in millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems that exploit the spatial sparsity inherent in such channels. Initially, a novel sparse Bayesian learning (SBL) based block-sparse channel estimation technique is developed for a mm Wave hybrid MIMO system with multiple measurement vectors, which overcomes the shortcomings of the existing orthogonal matching pursuit-based framework. This is subsequently extended to a temporally correlated block-sparse mm Wave MIMO channel. Further, an online recursive hierarchical Bayesian Kalman Filter is developed for the estimation of a time-selective mm Wave MIMO channel. Bayesian Cramer-Rao bounds are also derived for the proposed static and time-selective mmWave MIMO channel estimation schemes followed by precoder/combiner design employing the SBL-based imperfect channel estimates. Simulation results are presented to demonstrate the improved performance of the proposed SBL-based channel estimation techniques in comparison to the popular OMP-based scheme proposed recently.
机译:本文开发了毫米波(mmWave)多输入多输出(MIMO)系统中的块稀疏信道估计方案,该方案利用了此类信道固有的空间稀疏性。最初,针对具有多个测量向量的毫米波混合MIMO系统,开发了一种基于稀疏贝叶斯学习(SBL)的新颖的块稀疏信道估计技术,该技术克服了现有的基于正交匹配追踪的框架的缺点。随后将其扩展到时间相关的块稀疏毫米波MIMO信道。此外,开发了在线递归分层贝叶斯卡尔曼滤波器,用于估计时间选择毫米波MIMO信道。还针对提出的静态和时间选择mmWave MIMO信道估计方案导出贝叶斯Cramer-Rao边界,然后采用基于SBL的不完美信道估计进行预编码器/组合器设计。仿真结果表明,与最近提出的基于OMP的流行方案相比,基于SBL的信道估计技术具有更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号