首页> 外文期刊>IEEE Transactions on Signal Processing >Undersampled Sparse Phase Retrieval via Majorization–Minimization
【24h】

Undersampled Sparse Phase Retrieval via Majorization–Minimization

机译:通过最小化对欠采样的稀疏相位进行检索

获取原文
获取原文并翻译 | 示例

摘要

In the undersampled phase retrieval problem, the goal is to recover an N-dimensional complex-valued signal from only M <; N intensity measurements without phase information. This inverse system is not only nonconvex, but also underdetermined. In this paper, we propose to exploit the sparsity in the original signal and develop two low-complexity algorithms with superior performance based on the majorization-minimization framework. The proposed algorithms are preferred to existing benchmark methods, since at each iteration a simple convex surrogate problem is solved with a closed-form solution that monotonically decreases the objective function value. When the unknown signal is sparse in the standard basis, the first algorithm C-PRIME can produce a stationary point of the corresponding nonconvex phase retrieval problem. When the unknown signal is not sparse in the standard basis, the second algorithm SC-PRIME can find a coordinatewise stationary point of the more challenging phase retrieval problem through sparse coding. Experimental results validate that the proposed algorithms have higher successful recovery rate and less normalized mean square error than existing up-to-date methods under the same setting.
机译:在欠采样相位恢复问题中,目标是仅从M <来恢复N维复值信号。无相位信息的N次强度测量。这个逆系统不仅是非凸的,而且是不确定的。在本文中,我们建议在原始最小化框架的基础上,利用原始信号的稀疏性,并开发出两种性能优异的低复杂度算法。所提出的算法优于现有的基准测试方法,因为在每次迭代时,都使用一个封闭形式的解决方案来解决一个简单的凸替代问题,该解决方案会单调降低目标函数值。当未知信号在标准基础上稀疏时,第一算法C-PRIME可以产生相应的非凸相位检索问题的平稳点。当未知信号在标准基础上不是稀疏时,第二种算法SC-PRIME可以通过稀疏编码找到更具挑战性的相位检索问题的坐标平稳点。实验结果证明,与现有的在相同设置下的最新方法相比,该算法具有更高的成功恢复率和较小的归一化均方误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号