首页> 外文期刊>IEEE Transactions on Signal Processing >PRIME: Phase Retrieval via Majorization-Minimization
【24h】

PRIME: Phase Retrieval via Majorization-Minimization

机译:总理:通过主要化-最小化进行相位检索

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the phase retrieval problem in which measurements consist of only the magnitude of several linear measurements of the unknown, e.g., spectral components of a time sequence. We develop low-complexity algorithms with superior performance based on the majorization-minimization (MM) framework. The proposed algorithms are referred to as PRIME: Phase Retrieval vIa the Majorization-minimization techniquE. They are preferred to existing benchmark methods since at each iteration a simple surrogate problem is solved with a closed-form solution that monotonically decreases the original objective function. In total, three algorithms are proposed using different majorization-minimization techniques. Experimental results validate that our algorithms outperform existing methods in terms of successful recovery and mean-square error under various settings.
机译:本文考虑了相位检索问题,其中测量仅由未知数(例如时间序列的频谱分量)的几个线性测量的幅度组成。我们基于最小化(MM)框架开发了性能优异的低复杂度算法。所提出的算法被称为PRIME:相位检索,主要是采用最小化技术。它们是现有基准方法的首选,因为在每次迭代时,都使用一个封闭形式的解决方案来解决一个简单的替代问题,该解决方案会单调减少原始目标函数。总共提出了三种使用不同主化-最小化技术的算法。实验结果证明,在各种设置下,我们的算法在成功恢复和均方误差方面均优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号