首页> 外文期刊>IEEE Transactions on Signal Processing >Fast Unit-Modulus Least Squares With Applications in Beamforming
【24h】

Fast Unit-Modulus Least Squares With Applications in Beamforming

机译:快速单位模最小二乘及其在波束成形中的应用

获取原文
获取原文并翻译 | 示例

摘要

Unit-modulus least squares (ULS) problems arise in many applications, including phase-only beamforming, sensor network localization, synchronization, phase retrieval, and radar code design. ULS formulations can always be recast as unit-modulus quadratic programs, to which semidefinite relaxation (SDR) can be applied, and is often the state-of-the-art approach. However, SDR lifts the problem dimension (i.e., the number of variables) from N to N2, which drastically increases the memory burden and computational cost when the problem size is already large-e.g., when designing phase-only beamformer weights for massive multiple-input-multiple-output systems. This paper focuses on scalable first-order algorithms for the ULS problem and some of its variants. It advocates using simple gradient projection (GP) as a starting point for solving the ULS problem, establishes global convergence of GP to a Karush-Kuhn-Tucker point for this NP-hard problem, and bounds its iteration complexity. Then it proposes ULS extensions tailored to reflect practical beamformer design objectives, bringing in and exploiting new degrees of freedom to improve the beampattern designs. Simple variants of GP are proposed to deal with these extended ULS problems. Simulations are used to showcase the effectiveness of the proposed algorithms in both the plain ULS problem and in the context of phase-only beamforming.
机译:单位模最小二乘(ULS)问题出现在许多应用中,包括仅相位波束成形,传感器网络定位,同步,相位检索和雷达代码设计。 ULS公式始终可以重铸为单位模二次程序,可以将其应用半定松弛(SDR),并且通常是最新技术。但是,SDR将问题维度(即变量的数量)从N提升为N2,这在问题规模已经很大时(例如,在为大规模多波束设计纯相位波束成形器权重时)大大增加了内存负担和计算成本输入多输出系统。本文着重于针对ULS问题及其某些变体的可扩展一阶算法。它提倡以简单的梯度投影(GP)作为解决ULS问题的起点,为该NP难题建立GP到Karush-Kuhn-Tucker点的全局收敛性,并限制其迭代复杂度。然后,它提出了量身定制的ULS扩展,以反映实际的波束形成器设计目标,引入并利用新的自由度来改进波束图设计。建议使用GP的简单变体来处理这些扩展的ULS问题。仿真被用来展示所提出的算法在纯ULS问题和仅相位波束形成的情况下的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号