首页> 外文学位 >Fast regularized total least squares methods with applications.
【24h】

Fast regularized total least squares methods with applications.

机译:快速正则化总最小二乘法与应用程序。

获取原文
获取原文并翻译 | 示例

摘要

The dissertation consists of two parts. The first part considers the regularized total least squares problems. Constructing linear systems are an appropriate approach in understanding and modeling inverse problems which arise in many fields in engineering and science. A least squares solution is a proper method to solve the overdetermined linear system when noise is included only in the observed data. However, when the data matrix is contaminated by noise as well as the observed data, Total Least Squares methods are more appropriate. Additionally, a regularization technique is considered when the data matrix is ill-conditioned, otherwise Total Least Squares produces a noise-dominant output. Thus, to solve ill-posed linear systems arising from inverse problems, we develop methods for regularized Total Least Squares problems.;First we consider the Total Least Squares problems with Tikhonov regularization. Golub, Hansen, and O'Leary [SIAM J. Matrix Anal. Appl., 21 (2000), pp. 185-194] show that the problem of finding the Total Least Squares solution is equivalent to the solution of the two parameter linear system. Our method derives two nonlinear equations from the two parameter linear system, applies a Newton method with a nonsingular Jacobian matrix that is computed inexpensively. Another approach combines two projection methods for the two-parameter Newton iteration for the higher dimensional problems. Specifically, the first fixes the subspace dimension of the projection before the beginning the iterations by using Bidiagonal Reduction, and the second expands the subspace dynamically during the iterations by employing a generalized Krylov subspace expansion.;Next, we consider another kind of regularization, which is denoted as a dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a dual regularized Total Least Squares problem considers two constraints; the one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations similar to the two-parameter Newton iteration method. However, since the Jacobian matrix is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.;In the second part, template tracking problems are considered. Template tracking is the procedure of finding an image patch in each frame that is most similar to the given template. To improve the accuracy of the template tracking, appearance vectors are used to model appearance and illumination variations. This estimation involves computing the principal components of the augmented image matrix at each frame. Since computing the principal components is very expensive, we adopt the truncated bidiagonalization and the Truncated URV decomposition as alternatives to computing the principal components. In the experiments, we show that two methods are attractive alternatives in fast template tracking problems, especially when the size of the template image matrix grows.
机译:论文分为两部分。第一部分考虑正则化的总最小二乘问题。构造线性系统是理解和建模逆向问题的合适方法,逆向问题在工程和科学的许多领域中都会出现。当噪声仅包含在观测数据中时,最小二乘解是解决超定线性系统的合适方法。但是,当数据矩阵和噪声以及观察到的数据都被污染时,总最小二乘法更合适。此外,当数据矩阵条件不佳时,可以考虑使用正则化技术,否则,总最小二乘法会产生噪声为主的输出。因此,为解决反问题引起的不适定线性系统,我们开发了正规化总最小二乘问题的方法。首先,我们考虑了用Tikhonov正则化的总最小二乘问题。 Golub,Hansen和O'Leary [SIAM J. Matrix Anal。 Appl。,21(2000),pp。185-194]表明寻找总最小二乘解的问题等同于两参数线性系统的解。我们的方法从两个参数的线性系统中导出了两个非线性方程,并应用了牛顿法和一个非奇异的Jacobian矩阵,该矩阵可以廉价地进行计算。对于高维问题,另一种方法结合了两种投影方法用于两参数牛顿迭代。具体而言,第一种方法是使用双对角归约法在迭代开始之前固定投影的子空间尺寸,第二种方法是通过使用广义Krylov子空间扩展在迭代过程中动态扩展子空间。接下来,我们考虑另一种正则化,即表示为双重正则化总最小二乘问题。与限制解决方案大小的Tikhonov正则化不同,双重正则化的总最小二乘问题考虑了两个约束。一个限制了数据矩阵中错误的大小,另一个限制了所观察到的数据中错误的大小。我们的方法推导了两个类似于两参数牛顿迭代法的非线性方程。但是,由于不能保证雅可比矩阵是非奇异的,所以我们采用基于信任区域的迭代方法来获得解。第二部分,考虑模板跟踪问题。模板跟踪是在每个帧中找到与给定模板最相似的图像补丁的过程。为了提高模板跟踪的准确性,使用外观向量对外观和照明变化进行建模。该估计涉及在每个帧处计算增强图像矩阵的主要成分。由于计算主成分非常昂贵,因此我们采用截断的对角线化和截断的URV分解作为计算主成分的替代方法。在实验中,我们表明在快速模板跟踪问题中,尤其是当模板图像矩阵的尺寸增大时,两种方法是有吸引力的替代方法。

著录项

  • 作者

    Lee, Geunseop.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号