首页> 外文期刊>IEEE Transactions on Robotics >A General Framework to Increase Safety of Learning Algorithms for Dynamical Systems Based on Region of Attraction Estimation
【24h】

A General Framework to Increase Safety of Learning Algorithms for Dynamical Systems Based on Region of Attraction Estimation

机译:基于吸引区估计区域提高动态系统学习算法安全的一般框架

获取原文
获取原文并翻译 | 示例

摘要

Although the state-of-the-art learning approaches exhibit impressive results for dynamical systems, only a few applications on real physical systems have been presented. One major impediment is that the intermediate policy during the training procedure may result in behaviors that are not only harmful to the system itself but also to the environment. In essence, imposing safety guarantees for learning algorithms is vital for autonomous systems acting in the real world. In this article, we propose a computationally effective and general safe learning framework, specifically for complex dynamical systems. With a proper definition of the safe region, a supervisory control strategy, which switches the actions applied on the system between the learning-based controller and a predefined corrective controller, is given. A simplified system facilitates the estimation of the safe region for the high-dimensional dynamical system. During the learning phase, the belief of the safe region is updated with the actual execution results of the corrective controller, which in turn enables the learning-based controller to have more freedom in choosing its actions. Two examples are given to demonstrate the performance of the proposed framework, one simple inverted pendulum to illustrate the online adaptation method, and one quadcopter control task to show the overall performance.
机译:虽然最先进的学习方法表现出令人印象深刻的动态系统的结果,但仅介绍了真实物理系统上的一些应用。一个主要障碍是培训程序期间的中间政策可能导致行为不仅对系统本身有害,而且是对环境的危害。从本质上讲,对学习算法施加安全保障对于在现实世界中的自治系统来说至关重要。在本文中,我们提出了一种计算有效和一般安全的学习框架,专门针对复杂的动态系统。通过适当的安全区域定义,给出了一种监控策略,它在基于学习的控制器和预定义的校正控制器之间切换应用于系统之间的动作。简化的系统有助于估计高维动力系统的安全区域。在学习阶段,安全区域的信仰是使用纠正控制器的实际执行结果进行更新,这又使基于学习的控制器能够在选择其动作方面具有更多自由度。给出了两个示例来证明所提出的框架的性能,一个简单的反相摆动来说明在线适应方法,以及一个Quadcopter控制任务以显示整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号