...
首页> 外文期刊>IEEE Transactions on Robotics >The 3-D Spring–Mass Model Reveals a Time-Based Deadbeat Control for Highly Robust Running and Steering in Uncertain Environments
【24h】

The 3-D Spring–Mass Model Reveals a Time-Based Deadbeat Control for Highly Robust Running and Steering in Uncertain Environments

机译:3-D弹簧-质量模型揭示了基于时间的无差拍控制,可在不确定的环境中实现高度鲁棒的行驶和转向

获取原文
获取原文并翻译 | 示例
           

摘要

Over the past three decades, the spring–mass model has developed into the basic behavior model to study running in animals and robots. In the planar version, this model has helped to reveal and understand the passive stabilization of running in the horizontal and sagittal planes, and to derive from this knowledge control strategies for running robots. However, only few attempts have been made to transfer the knowledge to 3-D locomotion. Here, we show that the 3-D spring–mass model reveals a deadbeat control that does not require feedback about the actual ground level to produce highly robust running and steering in uncertain environments. The control naturally extends the time-based control derived for the planar version of this model and allows it to navigate rough terrain, while stabilizing running and steering. Using this control strategy, we demonstrate in simulation that a human-like system running at 5 ms$^{-1}$ tolerates frequent ground disturbances up to 30% of the leg length. Moreover, we find that the control outperforms a classical leg-placement strategy in terms of turning rate and disturbance rejection if the relative errors in system energy and the other model parameters stay small ($<$10%). Our results suggest that the time-based control can be a powerful alternative for leg-placement strategies in highly maneuverable running robots.
机译:在过去的三十年中,弹簧质量模型已发展成为研究动物和机器人运行的基本行为模型。在平面版本中,该模型有助于揭示和理解在水平面和矢状平面上运行的被动稳定性,并从此知识中得出了运行机器人的知识控制策略。但是,只有很少的尝试将知识转移到3-D运动中。在这里,我们证明了3-D弹簧-质量模型揭示了一种无差拍控制,该控制不需要关于实际地面的反馈即可在不确定的环境中产生高度鲁棒的行驶和转向。该控件自然扩展了从该模型的平面版本得出的基于时间的控件,并使其能够在崎rough的地形中导航,同时稳定了行驶和转向。使用这种控制策略,我们在仿真中演示了一个运行在5毫秒的类人系统。 $ ^ {-1} $ 可以承受不超过腿长30%的频繁地面干扰。此外,我们发现,如果系统能量和其他模型参数的相对误差保持较小,则在转弯速率和干扰抑制方面,该控件的性能将优于经典的腿部放置策略( $ <$ 10%)。我们的结果表明,基于时间的控制可以成为高度可操作的运行机器人中腿部放置策略的有力替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号