首页> 外文期刊>Robotics, IEEE Transactions on >High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning
【24h】

High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning

机译:使用基于并行采样的运动计划进行不确定性下的高频重新计划

获取原文
获取原文并翻译 | 示例

摘要

As sampling-based motion planners become faster, they can be reexecuted more frequently by a robot during task execution to react to uncertainty in robot motion, obstacle motion, sensing noise, and uncertainty in the robot's kinematic model. We investigate and analyze high-frequency replanning (HFR) where, during each period, fast sampling-based motion planners are executed in parallel as the robot simultaneously executes the first action of the best motion plan from the previous period. We consider discrete-time systems with stochastic nonlinear (but linearizable) dynamics and observation models with noise drawn from zero mean Gaussian distributions. The objective is to maximize the probability of success (i.e., avoid collision with obstacles and reach the goal) or to minimize path length subject to a lower bound on the probability of success. We show that, as parallel computation power increases, HFR offers asymptotic optimality for these objectives during each period for goal-oriented problems. We then demonstrate the effectiveness of HFR for holonomic and nonholonomic robots including car-like vehicles and steerable medical needles.
机译:随着基于采样的运动计划器变得越来越快,可以在执行任务期间由机器人更频繁地重新执行它们,以对机器人运动,障碍物运动,感测噪声和机器人运动学模型中的不确定性做出反应。我们调查并分析了高频重计划(HFR),其中在每个周期中,当机器人同时执行上一个周期的最佳运动计划的第一个动作时,并行执行基于快速采样的运动计划器。我们考虑具有随机非线性(但可线性化)动力学的离散时间系统和具有从零均值高斯分布得出的噪声的观测模型。目的是使成功概率最大化(即避免与障碍物碰撞并达到目标),或者使路径长度最小化,但要限制成功概率的下限。我们证明,随着并行计算能力的提高,HFR在每个阶段针对面向目标的问题为这些目标提供渐近最优性。然后,我们证明了HFR对于完整的和非完整的机器人(包括类似汽车的车辆和可操纵的医用针头)的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号