首页> 外文期刊>IEEE Transactions on Robotics >Precision Tracking via Joint Detailed Shape Estimation of Arbitrary Extended Objects
【24h】

Precision Tracking via Joint Detailed Shape Estimation of Arbitrary Extended Objects

机译:通过任意扩展对象的联合详细形状估计进行精确跟踪

获取原文
获取原文并翻译 | 示例

摘要

A novel approach to estimating the detailed shape of arbitrary extended objects jointly with their kinematics in the absence of a priori information is presented. The proposed shape model represents the tightest enclosing bound of the object projected into the ego motion plane as a polygon with an unknown number of vertices. Probabilistic inference techniques are employed to overcome various sources of uncertainty by rigorously estimating the joint distribution over the object shape and kinematic states, rather than estimating these variables directly. Simulation and experimental results are presented for objects with complex shapes tracked from an autonomous vehicle research platform. In addition to providing a richer set of information for higher level reasoning about extended objects (e.g. about object type, or occupied space), the results demonstrate that detailed shape estimates enable efficient use of sensor information by way of explicit surface-based sensor models; this efficient use of sensor information improves observability of latent object states, thereby improving tracking precision.
机译:提出了一种在没有先验信息的情况下联合估计任意扩展对象的详细形状及其运动学的新颖方法。提出的形状模型将投影到自我运动平面中的对象的最紧密封闭边界表示为具有未知数量顶点的多边形。通过严格估计对象形状和运动状态上的关节分布,而不是直接估计这些变量,采用概率推理技术来克服各种不确定性来源。从自动驾驶汽车研究平台跟踪的复杂形状物体的仿真和实验结果均已呈现。结果不仅提供了丰富的信息集以用于有关扩展对象的高级推理(例如,有关对象类型或占用空间的信息),而且还证明了详细的形状估计可以通过基于表面的显式传感器模型有效地使用传感器信息;传感器信息的这种有效使用提高了潜在物体状态的可观察性,从而提高了跟踪精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号