首页> 外文期刊>IEEE Transactions on Robotics and Automation >Triangulation-based fusion of sonar data with application in robot pose tracking
【24h】

Triangulation-based fusion of sonar data with application in robot pose tracking

机译:基于三角剖分的声纳数据融合及其在机器人姿态跟踪中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper a sensor fusion scheme, called triangulation-based fusion (TBF) of sonar data, is presented. This algorithm delivers stable natural point landmarks, which appear in practically all indoor environments, i.e., vertical edges like door posts, table legs, and so forth. The landmark precision is in most cases within centimeters. The TBF algorithm is implemented as a voting scheme, which groups sonar measurements that are likely to have hit the same object in the environment. The algorithm has low complexity and is sufficiently fast for most mobile robot applications. As a case study, we apply the TBF algorithm to robot pose tracking. The pose tracker is implemented as a classic extended Kalman filter, which use odometry readings for the prediction step and TBF data for measurement updates. The TBF data is matched to pre-recorded reference maps of landmarks in order to measure the robot pose. In corridors, complementary TBF data measurements from the walls are used to improve the orientation and position estimate. Experiments demonstrate that the pose tracker is robust enough for handling kilometer distances in a large scale indoor environment containing a sufficiently dense landmark set.
机译:在本文中,提出了一种传感器融合方案,称为声纳数据的基于三角剖分的融合(TBF)。该算法提供了稳定的自然点界标,该界标几乎出现在所有室内环境中,即门边缘,桌腿等垂直边缘。在大多数情况下,界标精度在几厘米以内。 TBF算法被实现为一种投票方案,该方案将可能撞击环境中同一物体的声纳测量值分组。该算法具有低复杂度,并且对于大多数移动机器人应用来说足够快。作为案例研究,我们将TBF算法应用于机器人姿态跟踪。姿势跟踪器被实现为经典的扩展​​卡尔曼滤波器,它使用里程表读数作为预测步骤,并将TBF数据用于度量更新。 TBF数据与预先记录的地标参考地图相匹配,以测量机器人的姿势。在走廊中,墙壁上的补充TBF数据测量值用于改善方向和位置估计。实验表明,姿势跟踪器具有足够的鲁棒性,可以在包含足够密集的地标集的大型室内环境中处理千米距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号