首页> 外文期刊>IEEE Transactions on Reliability >Confidence Intervals for Reliability and Quantile Functions With Application to NASA Space Flight Data
【24h】

Confidence Intervals for Reliability and Quantile Functions With Application to NASA Space Flight Data

机译:可靠性和分位数函数的置信区间在NASA太空飞行数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the construction of confidence intervals for a cumulative distribution function F(z), and its inverse quantile function F-1(u), at some fixed points z, and u on the basis of an i.i.d. sample Xlowbar={Xi}i=1 n, where n is relatively small. The sample is modeled as having a flexible, generalized gamma distribution with all three parameters being unknown. Hence, the technique can be considered as an alternative to nonparametric confidence intervals, when X is a continuous random variable. The confidence intervals are constructed on the basis of Jeffreys noninformative prior. Performance of the resulting confidence intervals is studied via Monte Carlo simulations, and compared to the performance of nonparametric confidence intervals based on binomial proportion. It is demonstrated that the confidence intervals are robust; when data comes from Poisson or geometric distributions, confidence intervals based on a generalized gamma distribution outperform nonparametric confidence intervals. The theory is applied to the assessment of the reliability of the Pad Hypergol Servicing System of the Shuttle Orbiter
机译:本文考虑了在一个固定点z和u上基于i.i.d的累积分布函数F(z)及其反分位数函数F-1(u)的置信区间的构造。样本Xlowbar = {Xi} i = 1 n,其中n相对较小。该样本被建模为具有灵活的广义伽玛分布,而所有三个参数均未知。因此,当X是连续随机变量时,可以将该技术视为非参数置信区间的替代方法。置信区间是基于Jeffreys非信息先验构造的。通过蒙特卡洛模拟研究所得置信区间的性能,并将其与基于二项式比例的非参数置信区间的性能进行比较。证明了置信区间是稳健的。当数据来自泊松分布或几何分布时,基于广义伽马分布的置信区间将优于非参数置信区间。该理论被应用于航天飞机轨道垫高hypergol服务系统的可靠性评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号